Work in progress:

Wildfire Effects on PM_{2.5} Exceedances

Daniel Tong, Yunyao Li & Air Quality group George Mason University

Email: qtong@gmu.edu

Quantifying Air Quality Effects of Wildfire Emissions

- Wildfire emissions: blended MODIS and VIIRS fire detection with NASA QFED emission algorithm (Zhang et al., 2015);
- Two runs using the Community Multiscale Air Quality (CMAQ) model: With and Without fire emissions;
- Study period (August October, 2020);
- Full chemistry with detailed anthropogenic and natural emissions;

Wildfire Contribution to Surface PM_{2.5}

• The Contribution Ratio (CR) to assess wildfire contribution to $PM_{2.5}$

80°W

110°W

100°W

Wildfire Effect on PM_{2.5} Exceedances

- USA EPA National Ambient Air Quality Standards (NAAQS): 35 μ g/m³ for 24h average; 12 μ g/m³ annual average.
- Wildfires were major contributor to 3,720 PM_{2.5} exceedances during Aug-Sep 2020.

>4.6M people exposed to smoke $PM_{2.5}$ levels exceeding annual NAAQS in 2020.

Fires in the Past

• As the Earth warms and the risk of droughts increases, extreme weather events have increased in the past decades

North America Chemical Reanalysis (NACR)

- Period: 2002-2019
- Resolution & Domain: 12 km CONUS
- Meteorology model: WRF V4.2, BC/IC: ERA5, Analysis nudging
- Emission: EPA EQUATES (2002-2017), NEI (2018 and after)
- Chemical transport model: CMAQ V5.3

Compare EPA Fire PM_{2.5} Emission with Other Fire Emission Products

	Total Emis (k Ton)
FINN	1.8e+04
QFED	3.6e+04
GFAS	0.8e+04
EPA	1.7e+04

Fire vs. Anthropogenic PM_{2.5} Emission

Fire vs. Anthropogenic PM_{2.5} Emission

- In Region 7, most of the exceedances are caused by fire.
- In Regions 8 and 9 the exceedance peaks do not match the fire peak.

Seasonal Change of Anthropogenic Emission

- The decreasing trend in the Eastern US anthropogenic emission.
- Emission Peak: Eastern US in Winter; Western US in Summer.

Seasonal Change of Fire Emission

Seasonal Change of PM_{2.5} Exceedance (AQS)

- The decreasing trend in the Eastern US PM2.5 exceedance.
- Exceedance Peak: Eastern US in summer; Western US one peak in summer, one peak in winter.

- Wintertime exceedance's major contributor is Ammonium.
- Summertime exceedance's major contributor is SO₄ for the Eastern US, and OC for the Western US.

Fire Contribution to $PM_{2.5}$ (%)

- Wildfire emissions: EPA EQUATES;
- Two runs using GMU WRF-CMAQ: With and Without fire emissions

Long-term Fire Contribution to PM_{2.5} (%)

