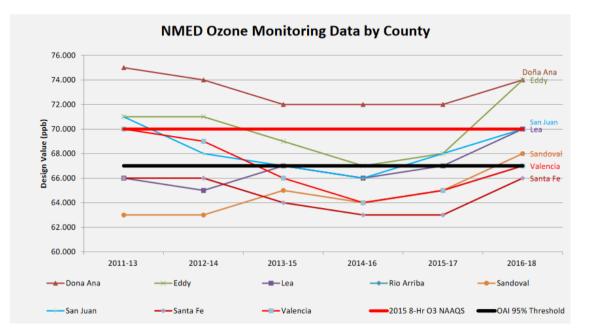
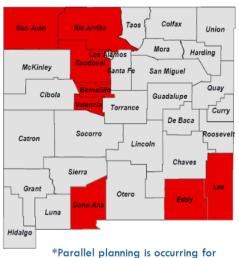
New Mexico OAI Study Photochemical Modeling – 1st Monthly Webinar May 2020

WESTAR and Ramboll

May 28, 2020

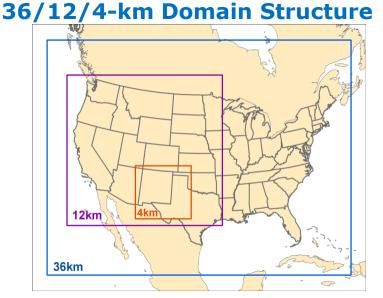
RAMBOLL Bright ideas. Sustainable change


Content


- Introduction
- Work Plan
- Evaluation of Existing 2014 WRF and Proposed NM OAI Study WRF Configuration
- Evaluation of 2014 Boundary Conditions (BCs) from WRAP 2014 GEOS-Chem
- Modeling Protocol Overview
- 2014 and 2023 Emissions for New Mexico
- 2014 and 2023 Mobile Source Assumptions and Activity Data for New Mexico
- Next Steps

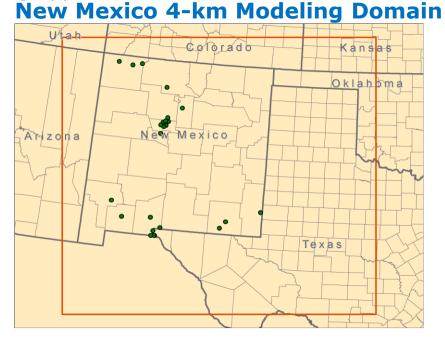
Introduction

- New Mexico Air Quality Control Act (NMAQCA) requires the NMED to develop a plan to address elevated ozone levels when air quality is within 95% of the ozone NAAQS (74-3-5.3, NMSA 1978)
- There are 8 counties in New Mexico with measured ozone concentrations within 95% of the 70 ppb 2015 ozone NAAQS
- NMED contracted with WESTAR/Ramboll to conduct 2014 and 2023 photochemical modeling to assess the contributions of sources to and effects of control measures on ozone concentrations



*Parallel planning is occurring for Bernalillo County through the Albuquerque/Bernalillo County Department of Environmental Health

- Counties within 95% of the standard:
 - San Juan (Navajo Lake, 70 ppb)
 - Doña Ana (several monitors, 74 ppb)
 - Eddy (Carlsbad, 74 ppb)
 - Lea (Hobbs, 70 ppb)
 - Rio Arriba (Coyote, 67 ppb)
 - Sandoval (Bernalillo, 68 ppb)
 - Valencia (Los Lunas, 67 ppb)


Work Plan (1 of 2)

- Task 1: Development Modeling Protocol/QAPP and Work Plan
 - Modeling Plan provides a roadmap on how the study will be carried, including episode, domain and model selection and current and future year modeling approaches

- Task 2: WRF Meteorological Modeling
 - $_{\odot}~$ Develop CAMx meteorological inputs for May-Aug 2014 and 36/12/4-km domains
- Task 3: Evaluate Boundary Condition Inputs

Based on WRAP 2014 GEOS-Chem global chemistry model
 RAMBÓLL

Work Plan (2 of 2)

- Task 4: 2014 and 2023 Emissions Development
 - Sources of 2014 and 2023 Emissions
 - Mobile Source Emissions
 - Natural Emissions
 - SMOKE Emissions Modeling
 - 2023 Emission Control Measures
- Task 5: CAMx 2014 Base Case Modeling
 - Model Performance Evaluation
 - Formal 2016 Base Case Modeling and MPE Report on Tasks 2-5

- Task 6: 2023 Future Year CAMx Modeling
 - 2023 Base Case and Future Year Ozone Design Value Projections
 - 2023 Ozone Source Apportionment Modeling
 - 2023 Control Measure Evaluation
- Task 7: Air Quality Technical Support Document (AQTSD)
 - Prepare formal AQTSD documenting the study
 - Transfer Modeling Databases and Results to Intermountain West Data Warehouse (IWDW)
 - Maintain NM OAI Study Webpage on WRAP
 website throughout the study

Current Schedule

Task	Deliverable	Date		
1. Formal Modeling Protocol/QAPP and Work Plan				
	Kick-Off Conference Call	Apr 2020		
	Draft Modeling Protocol/QAPP and Work Plan	May 2020		
	PPT on final approach and project plan	May 2020		
	Final Modeling Protocol/QAPP and Work Plan	May2020		
	Response-to-Comments (RTC) Document	May 2020		
2. Base Year Meter	prological Modeling (Met)			
2.1 Evaluate Met Model	PPT on 2014 WAQS and EPA WRF	May 2020		
2.2 Additional Met Model	PPT on New WRF 4-km MPE in New Mexico	Jun 2020		
2.3 Process Met Data	PGM summer 2014 36/12/4-km met inputs	Jun 2020		
3. Boundary Condi	tions (BC)			
3.1 Evaluate BC Data	PPT on WRAP 2014 GEOS-Chem BCs	Jun 2020		
4. Base Year (2014	1) and Future Year (2023) Emissions			
4.1 2014 and 2023	PPT on sources of 2014 and 2023 New Mexico EI	May 2020		
Emissions for 4-km New Mexico Domain	<i>PPT and tile plots/excel spreadsheets for 2014 and 2023 emissions in the 4-km NM domain</i>	Jun 2020		
4.2 Mobile Sources				
4.2.1 Evaluate Mobile EI	PPT on options for 2014/2023 mobile sources	Jun 2020		
	PPT on final 2014/2023 mobile source EI	Jun 2020		
4.2.3 Prepare Mobile	PPT on 2014/2023 SMOKE-MOVES	Aug 2020		
Source Emission Inputs	Model-ready 2014/2023 mobile source inputs	Aug 2020		
4.3 Biogenic/Natural	PPT on biogenic and natural emission modeling	Jul 2020		
Emissions	Model-ready 2014 natural emissions inputs	Jul 2020		
4.4 SMOKE Modeling	PPT on 2014/2023 SMOKE modeling	Aug 2020		
	Model-ready 2014/2023 anthropogenic EI inputs	Aug 2020		
4.5 EY Emissions	PPT on FY 2023 SMOKE control/strategies	Aug 2020		
Strategies	Summary tables/plots for 2023 scenarios	Aug 2020		

5. 2014 Base Year	(2014) Air Quality Modeling		
	Webinar PPT on final 2014 base case and MPE	Sep 2020	
	Draft report on Tasks 2-5, 2014 Base and MPE	Sep 2020	
	Final report on Tasks 2-5, 2014 Base and MPE	Oct 2020	
	RtC on 2014 base case and MPE report Oct 2020		
6. Future Year (2023) Air Quality Modeling			
6.1 FY PGM Modeling	PPT on 2023 PGM Modeling	Oct 2020	
	Difference plots of FY-BY Ozone Concentrations	Oct 2020	
6.2 Attainment Test	PPT on 2023 ozone DV projections	Oct 2020	
	PPT on FY Source Apportionment Modeling	Nov 2020	

Current Webinar Schedule and Content

Webinar No.	Webinar Topics by Task	Date
1.	1. Modeling Protocol and Work Plan	May 2020
	2.1 Evaluate Existing Met	
	4.1 Recommend 2014 and 2023 Emissions	
	4.2.1 Recommend 2014 & 2023 Mobile Source Emissions	
2.	2.2 Additional Met Modeling	Jun 2020
	3.1 Evaluate BC Data	
	4.1 Summary of 2014 and 2023 Emissions	
3.	4.2.1 Summary of 2014 and 2023 Mobile Source Emissions	Jul 2020
	4.3 2014 Natural Emissions Results (e.g., Biogenic, LNOx)	
4.	4.2.3 2014/2023 SMOKE-MOVES for 4-km NM Domain	Aug 2020
	4.4 2014 & 2023 SMOKE Emissions Modeling Results	
5.	4.5 FY Emissions Strategy Results	Sep 2020
	5. 2014 CAMx Base Case Modeling and MPE	
6.	6.1 2023 CAMx Modeling Results	Oct 2020
	6.2 2023 Ozone Design Value Projections	
7.	6.3 2023 Control Strategy Results	Nov 2020
	6.4 2023 Source Apportionment Modeling Results	

Subtask 2.1: Evaluate Existing 2014 Meteorology and Define NM OAI Study WRF 2014 36/12/4-km Model Configuration

NM OAI vs WAQS vs EPA WRF Configurations

WRF Option	Proposed NM OAI	2014 WAQS	2014/2015 EPA
Vertical Coordinate	hybrid	eta	eta
Domains run	36/12/4-km	36/12/4-km	12-km
Microphysics	Thompson	Thompson	Morrison 2
LW Radiation	RRTMG	RRTMG	RRTMG
SW Radiation	RRTMG	RRTMG	RRTMG
LSM	Noah	Noah	Pleim-Xiu
PBL scheme	YSU	YSU	ACM2
Sfc Layer Physics	MM5 similarity	MM5 similarity	MM5 similarity
Cumulus	36/12/4-km Multi- scale Kain Fritsch	36/12-km Multi- scale Kain Fritsch	Kain-Fritsch
BC, IC Analysis Nudging Source	12-km NAM/ERA5	12-km NAM	12-km NAM
Analysis Nudging Grids	36/12-km	36/12-km	12-km
Obs Nudging	None	4-km	None
Sea Sfc Temp	FNMOC	FNMOC	FNMOC

NM OAI vs WAQS vs EPA WRF Domains

50°N d02 d02 45°N -40°N -EPA 12US1 35°N -30°N -25°N -20°N -120°W 100°W 110°W 90°W 80°W

120°W

110°W

100°W

90°W

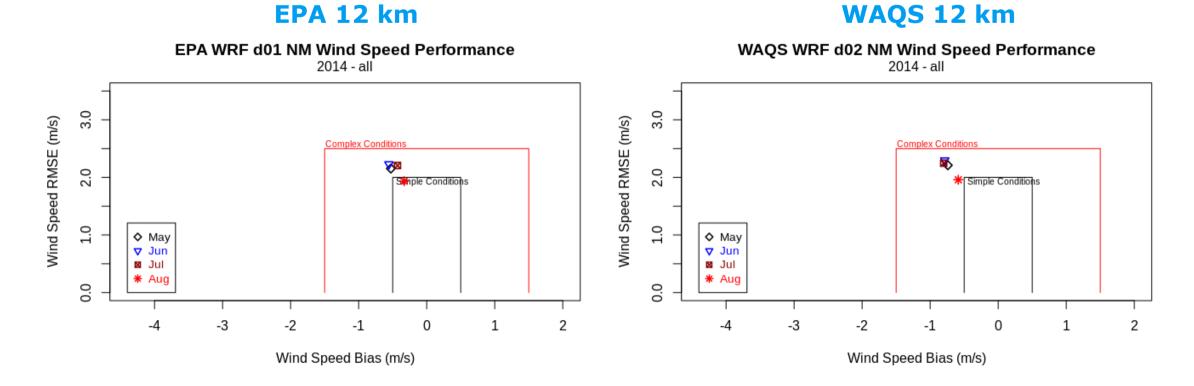
80°W

WAQS 36/12/4 km

NM OAI 36/12/4 km

EPA vs WAQS WRF MPE Approach

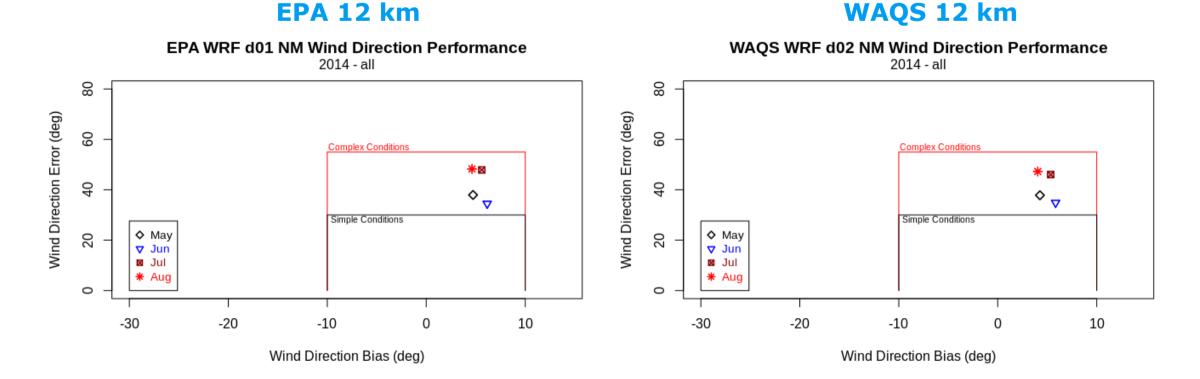
- Evaluate EPA 12US1 and WAQS 12WUS2 for April-August 2014
 - For both EPA and WAQS, include observation sites within New Mexico only
- Quantitative Evaluation
 - METSTAT model/obs pairing, bias/error statistics against NCAR ds3505 observations
 - Soccer plots monthly stats
 - Time series hourly and daily
 - Plots for all sites in NM, and each individual site within NM
- Qualitative Evaluation
 - PRISM precipitation spatial maps
 - Monthly and daily



WRF Statistical Benchmarks

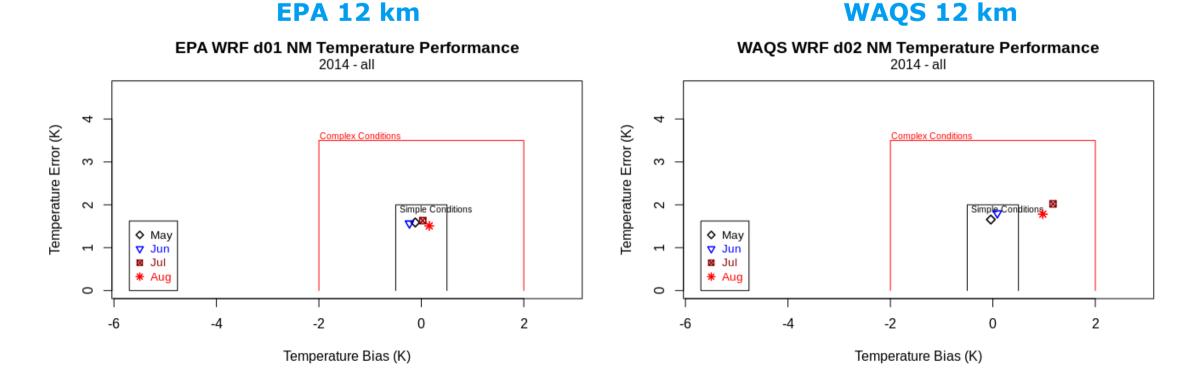
	Simple Conditions		Complex Conditions	
Meteorological Variable	Bias	Error	Bias	Error
Temperature	< ±0.5 °C	< 2.0 °C	< ±2.0 °C	< 2.5 °C
Wind Speed	< ±0.5 m/s	< 2.0 m/s (RMSE)	< ±1.5 m/s	< 2.5 m/s (RMSE)
Wind Direction	< ±10 degrees	< 30 degrees	< ±10 degrees	< 50 degrees
Humidity	< ±0.8 g/kg	< 2.0 g/kg	< ±1.0 g/kg	< 2.0 g/kg

Soccer Plots – Wind Speed for all NM sites



All months within complex conditions goal for both runs

Both runs have underprediction bias for all months; EPA slightly better

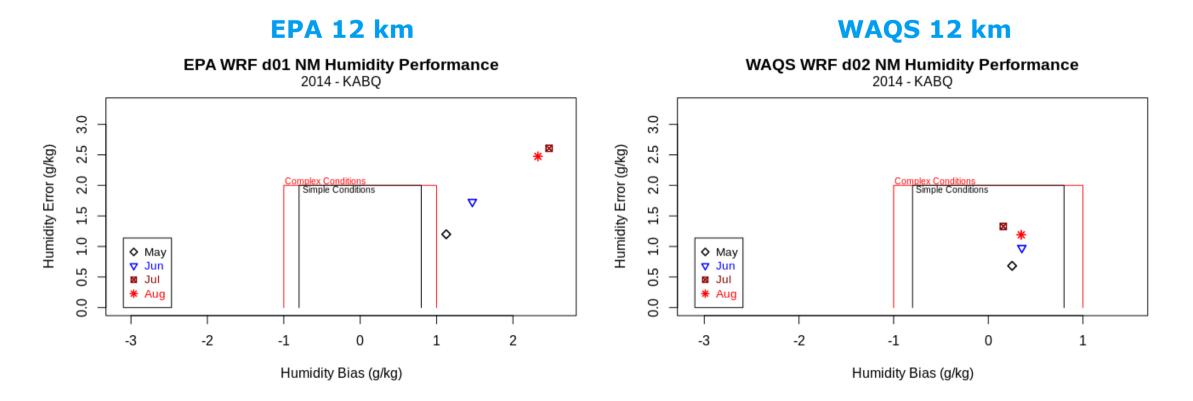

Soccer Plots – Wind Direction for all NM sites

WAQS and EPA performance nearly identical

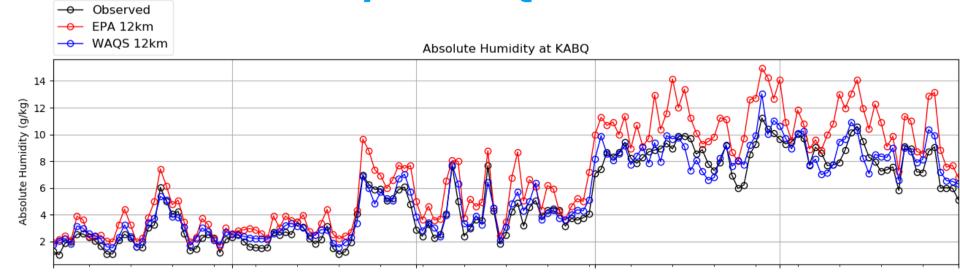
Soccer Plots – Temperature for all NM sites

EPA run outperforms WAQS

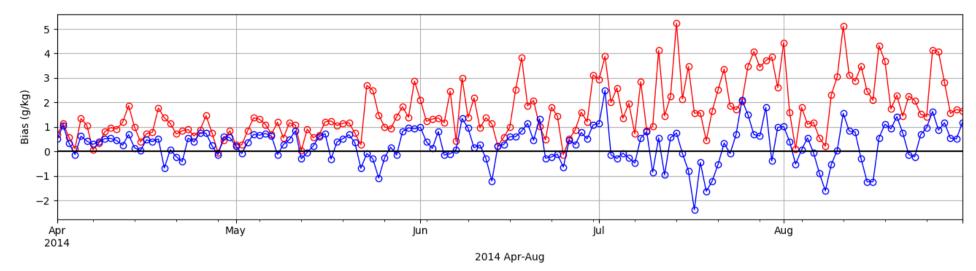
WAQS temperature poorest for Jul-Aug with warm bias


Soccer Plots – Humidity for all NM sites

WAQS run outperforms EPA; both runs have positive (wet) bias for all months EPA performance poorest for Jul-Aug: overactive convection?



Soccer Plots – Humidity for KABQ



WAQS run outperforms EPA; much smaller wet bias for all months

RAMBOLL

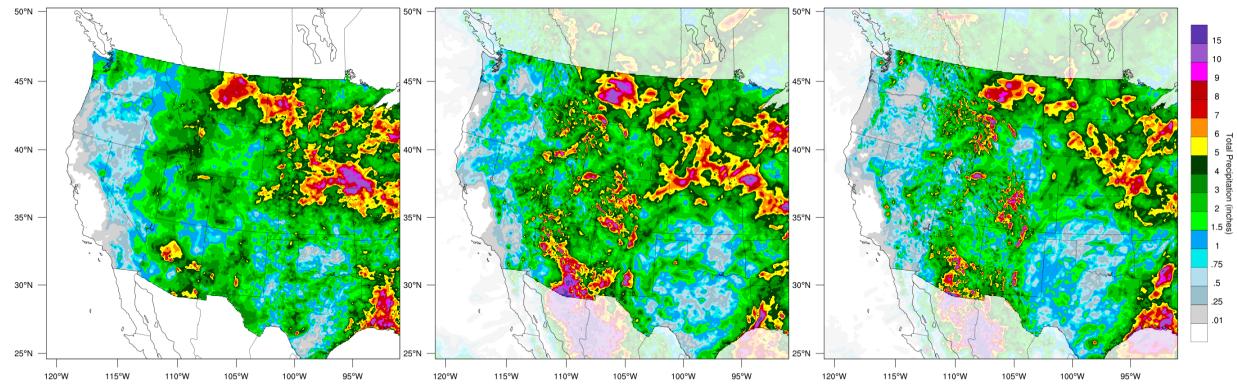
Monthly Precipitation Plots – Aug 2014

PRISM Obs

Contiguous U.S. Statistics: 10th=0.512 Median=2.358 Average=2.788 90th=5.633

Total PRISM Precipitation for 2014-08

EPA 12 km

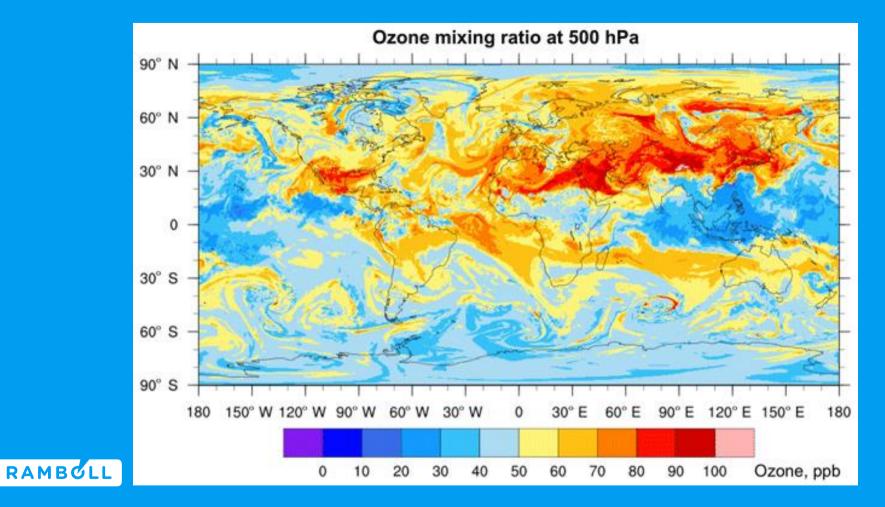

Total WBE Precipitation (EPA) for 2014-08

WRF Domain Statistics: 10th=0.02 Median=2.37 Average=2.92 90th=6.12

Contiguous U.S. Statistics: 10th=0.58 Median=2.64 Average=3.06 90th=6.01

WAQS 12 km

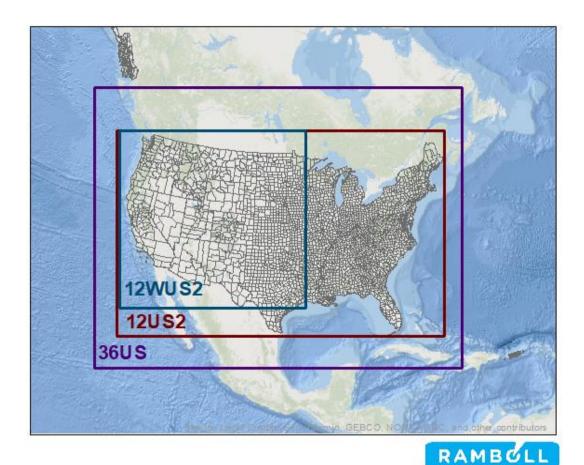
Total WRF Precipitation (WAQS) for 2014-08 WRF Domain Statistics: 10th=0.01 Median=1.88 Average=2.52 90th=5.54 Contiguous U.S. Statistics: 10th=0.39 Median=2.00 Average=2.55 90th=5.47



Existing 2014 WRF MPE Summary and Conclusions

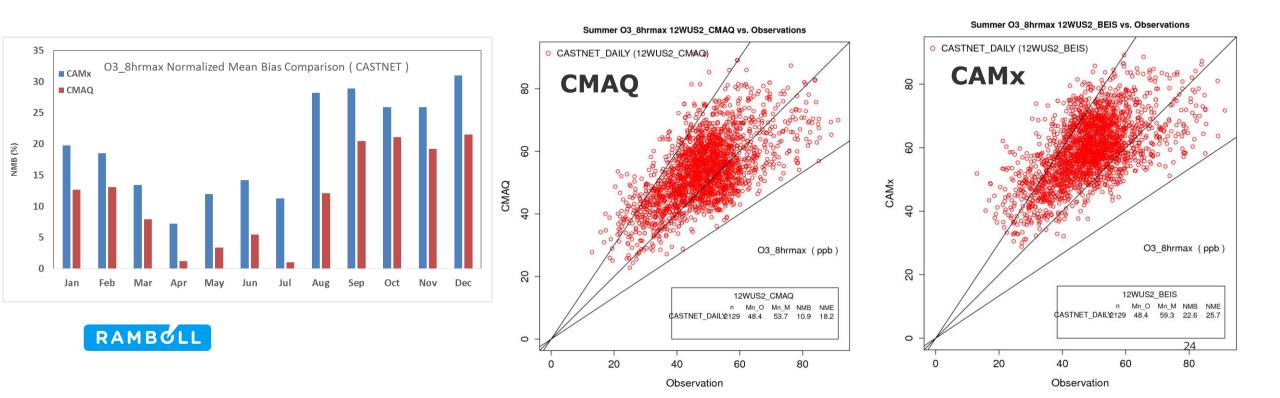
- WRF performance reasonable for both simulations outside of humidity/precipitation
- EPA wet bias in summer months associated with overactive summer convection
- WAQS smaller wet bias
- NM OAI proposed WRF configuration aligns closely with WAQS to avoid overactive summer convection in New Mexico, with these differences
 - Reposition 4 km domain to encompass all of New Mexico
 - Use hybrid vertical coordinate to improve representation of upper troposphere/lower stratosphere
 - $_{\odot}~$ Add second simulation driven by ERA5 analysis
 - \circ No observation nudging
- Two NM OAI WRF simulations (WRF/NAM12 and WRF/ERA5) currently running
- Present evaluation of these two simulations in June webinar

Task 3: Evaluate 2014 Boundary Conditions Based on WRAP 2014 GEOS-Chem


Overview of 2014 BC Evaluation

- Overview of WAQS-WRAP 2014 GEOS-Chem modeling
- Overview of WAQS 2014 Representative Base case Scenario
- Analysis of WAQS 2014 modeling results and BC contributions

Background

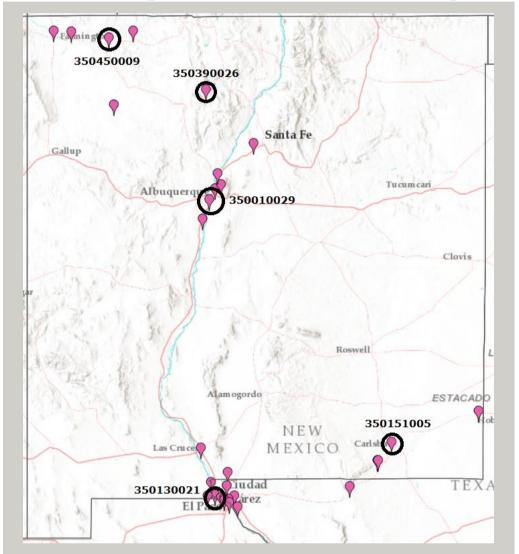

- Phase I and II of WRAP 2014 Shake-Out study developed a 2014v1 PGM modeling platform:
 - 36-km 36US and 12-km 12WUS2 domains
 - $_{\odot}\,$ CMAQ and CAMx PGMs
 - EPA 2014 GEOS-Chem BCs
 - $_{\odot}$ 2014v1 Emissions
 - 2014NEIv2 with western state updates
 - $\circ~$ BEIS Biogenic Emissions

BCs Based on EPA 2014 GEOS-Chem had issues

- Year-round ozone overestimation bias
 - In both CMAQ and CAMx, but more pronounced in CAMx
- Maybe some SO4 overestimation, even after eliminating volcano eruptions and DMS emissions

Revised 2014 GEOS-Chem simulation

- WRAP elected to conduct a revised 2014 GEOS-Chem simulation
 - Use updated emissions, newer GEOS-Chem version and other updates as used by EPA and Ramboll in their 2016 GEOS-Chem runs that produced BCs without the large ozone overestimation bias in the CMAQ and CAMx simulations.


Science Options	WRAP 2014 Basecase	EPA 2014 Basecase	EPRI 2016 Basecase
Version	Version 12.2.0 (2019-02-19)	Version 11-01 (2017-02-01)	Version 11-02r (2018-06-22)
Vertical Grid Mesh	72 Layers	47 Layers	72 Layers
Chemistry	standard chemistry with	tropospheric chemistry with	standard chemistry with complex
mechanism	complex SOA option	complex SOA option	SOA option
Horizontal Grids	2x2.5 degree (Nx, Ny = 144, 91)	4x5 degree (Νχ, Nγ = 72, 46)	2x2.5 degree (Nx, Ny = 144, 91)
Initial Conditions	6-month spin-up	1-year spin-up	6-month spin-up
Meteorology	2014 GEOS-FP meteorology	2014 GEOS-5 meteorology	2016 GEOS-FP meteorology
Photolysis	Default (FAST-J)	Default (FAST-J)	Default (FAST-J)
Advection Scheme	Default (TPCORE)	Default (TPCORE)	Default (TPCORE)
Cloud Convection	On/Relaxed Arakawa-Schubert	On/Relaxed Arakawa-Schubert	On/Relaxed Arakawa-Schubert
PBL	Lin and McElroy	Lin and McElroy	Lin and McElroy
Dry Deposition	Default (Wesely)	Default (Wesely)	Default (Wesely)
Chemistry Solver	Default (FLEXCHEM)	Default (FLEXCHEM)	Default (FLEXCHEM)
Parallelization	Open Multi-Processing (OMP)	Open Multi-Processing (OMP)	Open Multi-Processing (OMP)

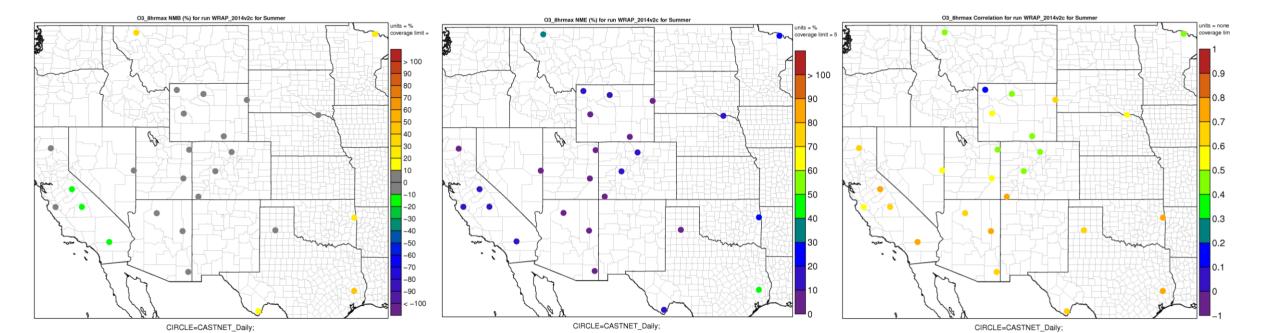
Representative Base Case Simulation Description

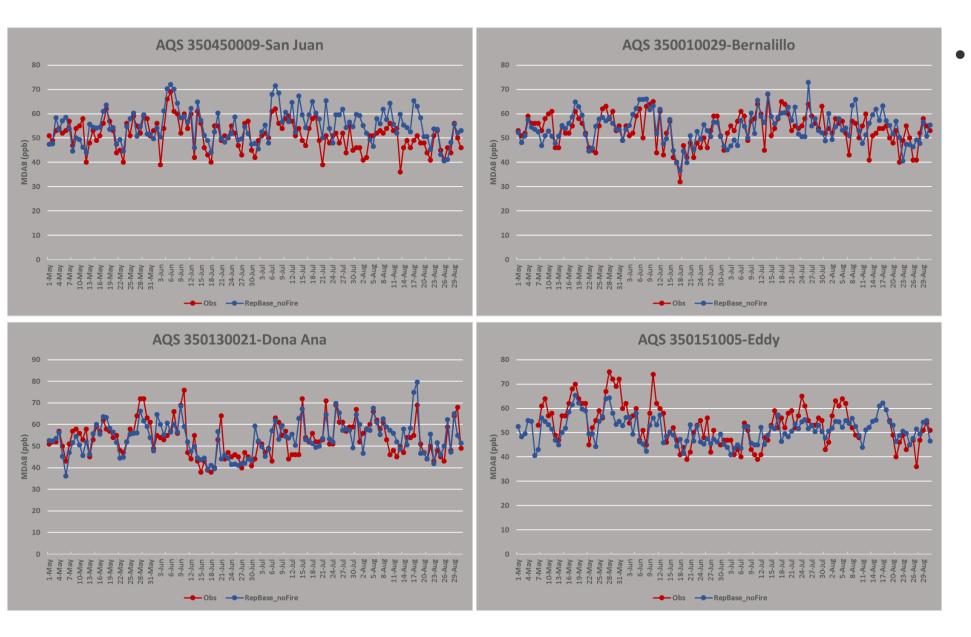
- WRAP 2014 GEOS-Chem used to derive Boundary conditions for 2014v2 and Representative Baseline (RepBase)
- Two additional GEOS-Chem simulations were performed to separate the Natural, Anthropogenic International and US contributions in the boundary conditions themselves:
 - Natural (NAT) and Zero-Rest-Of-the-World (ZROW)
- RepBase was instrumented in CAMx with source apportionment technology to track the ozone and PM contributions from the following 14 categories including boundary conditions:

Source Group Number	Brief Description
1	Natural Emissions
2	U.S. Wildfires (WF)
3	U.S. Prescribed Burns (Rx)
4	U.S. Agricultural Burning (Ag)
5	U.S. Anthropogenic Emissions (USAnthro)
6	Mexico Anthropogenic Emissions
7	Canada Anthropogenic Emissions
8	Off-Shore Commercial Marine Vessel (CMV) C3 Ocean Going Vessels (OGV) within 200 nautical miles of the coast (i.e., within the Emissions Control Area, ECA)
9	Remainder off-shore anthropogenic emissions that includes CMV C3 OGV outside of the ECA and non-U.S. O&G
10	Boundary Conditions: International contributions (BC_Intl)
11	Boundary Conditions: Natural contributions (BC_Nat)
12	Boundary Conditions: US contributions (BC_US)
13	Initial Conditions contributions
14	Top Boundary Concentrations contributions (top of the model)

Boundary Conditions Analysis Sites

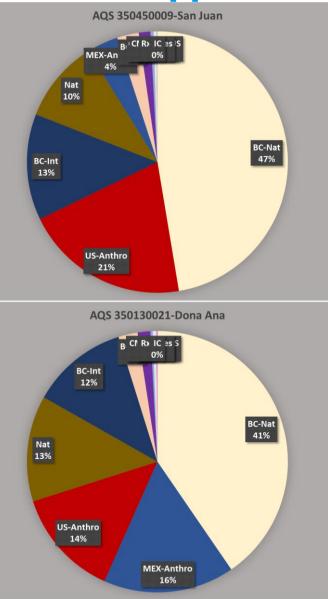
 Compared MDA8 ozone from WRAP Representative Base scenario (RepBase) source apportionment with a few selected and representative AQS sites in NM


Site ID	County	Latitude	Longitude
350450009	San_Juan	36.74	-107.98
350390026	Rio_Arriba	36.19	-106.70
350010029	Bernalillo	35.02	-106.66
350130021	Dona_Ana	31.80	-106.58
350151005	Eddy	32.38	-104.26

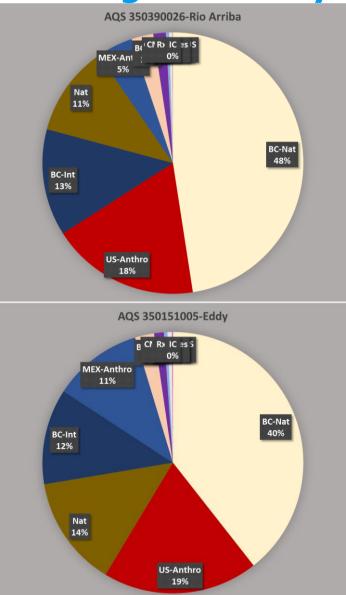

Selected Sites Ozone Model Performance

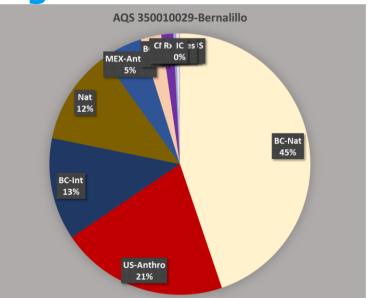
- RepBase does not have year specific emissions and is not meant to represent 2014. Fires contributions have been removed from this analysis
- RepBase statistics indicate performance for scenario in these sites are almost all within the goals for NMB and NME, within criteria for r
- Consistent with 2014v2 AZ, UT, CO ozone NMB, NME and r in the Summer (no CASTNET sites in NM)

Site ID	County	NMB (%)	NME (%)	r
350450009	San_Juan	7.36	10.36	0.63
350390026	Rio_Arriba	3.24	8.62	0.57
350010029	Bernalillo	1.34	8.10	0.66
350130021	Dona_Ana	0.26	8.03	0.72
350151005	Eddy	-4.33	9.45	0.72

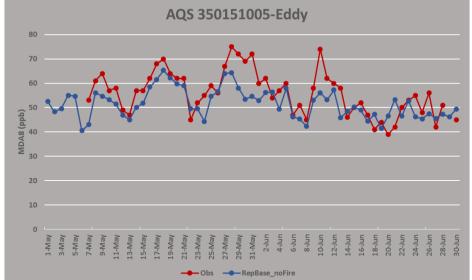


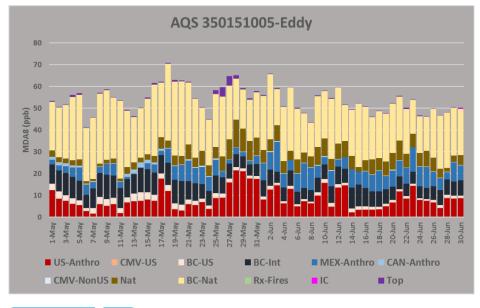
Selected Sites Time Series



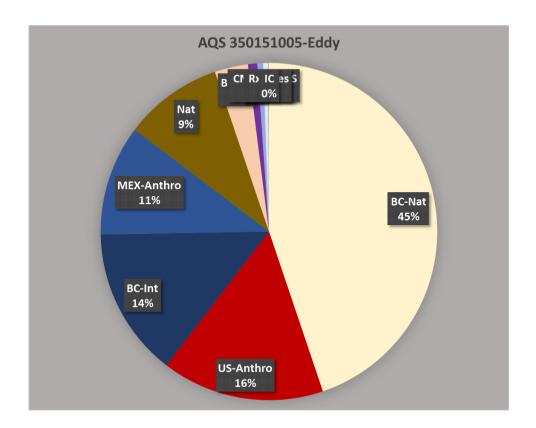

 RepBase statistics and time series suggest that is reasonable to use Source Apportionment results to understand sources of ozone at these sites

Source Apportionment Average over May to August

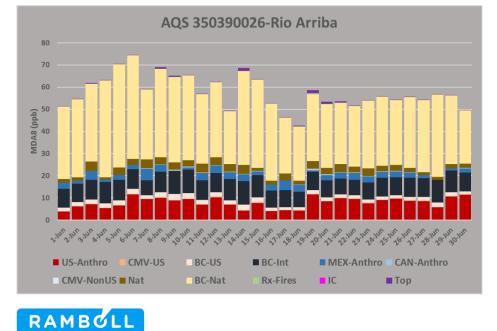

RAMBOLL

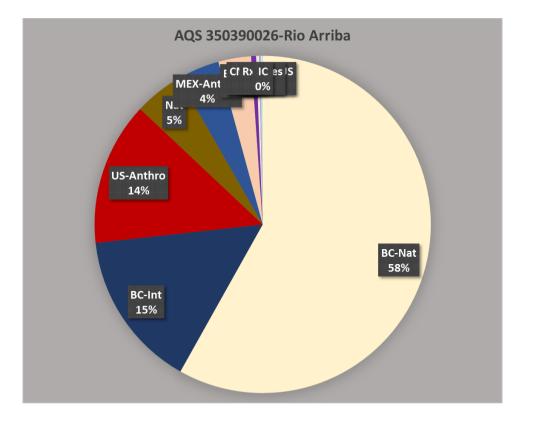


- Natural contribution from the GEOS-Chem Boundary Conditions
 ~ 40% to 48% of the ozone
- US Anthro ~ 14% to 21%
- International BC ~13%
- Mexican Anthro ~5%. Largest at Dona Ana county at 16%

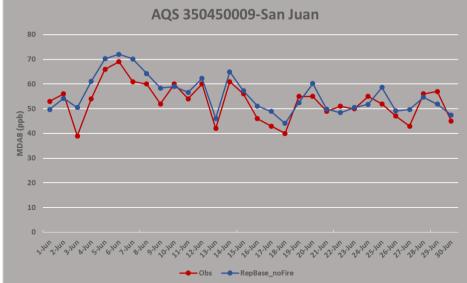

Source Apportionment: Eddy County

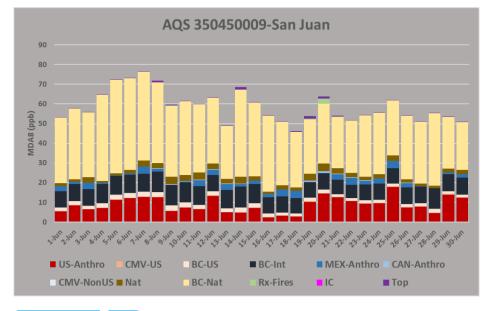
 Obs in Eddy County Site in May-Jun show multiple days with MDA8>70 ppb


- US Anthro and International BC contributions show equivalent contributions (16 and 14%)
- Peak on May 25 to 27 has some influence from the top of the model

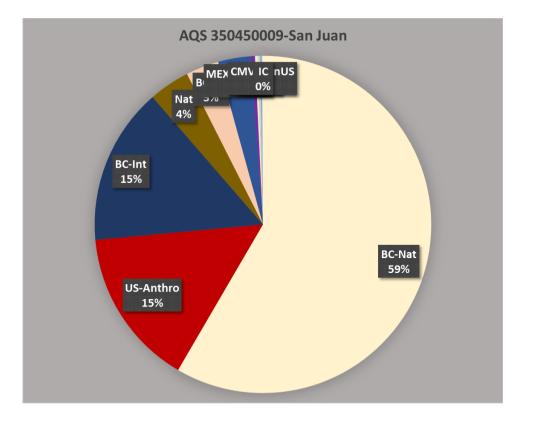

RAMBOLL

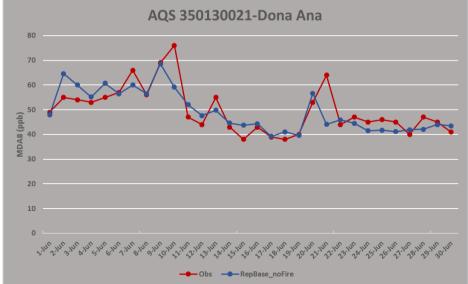
Source Apportionment: Rio Arriba county

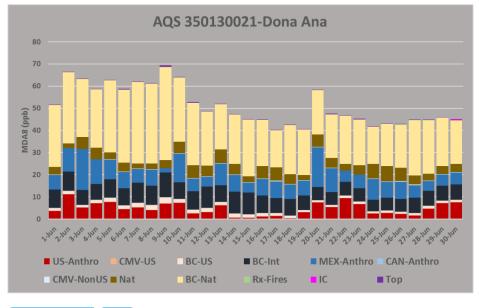




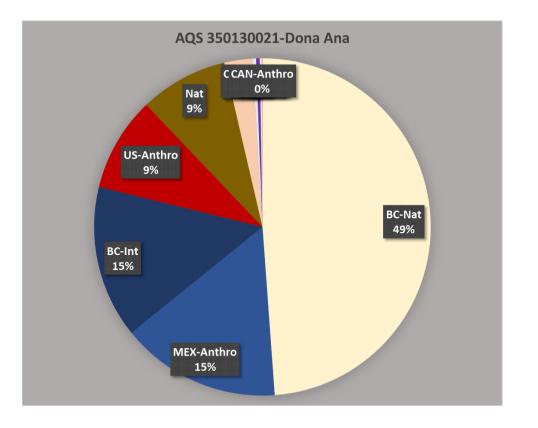
- International BC and US Anthro contributions show equivalent contributions (15 and 14%)
- Peak on June 6 dominated by Natural contributions from the Boundary


Source Apportionment: San Juan county



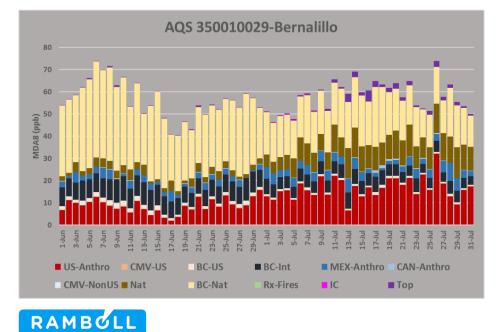

RAMBOLL

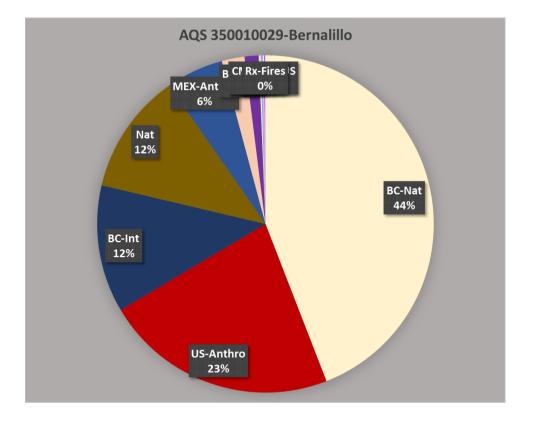
- International BC and US Anthro contributions show equivalent contributions (15%)
- Peak on June 7 dominated by Natural contributions from the Boundary



Source Apportionment: Dona Ana county




- International BC and Mexican Anthro contributions show equivalent contributions (15%)
- Peak on June 9 dominated by Natural contributions from the Boundary



Source Apportionment: Bernalillo county

- US Anthro is almost twice as large as International BC contributions
- First peak in June has large US and International contributions, second peak in July more dominated by US natural sources

GEOS-Chem Summary of Recent Updates

- WRAP 2014 Base Case used GEOS-Chem version 12.2.0 released 2019-02-19
- Current GC stable version is 12.8.2 released 2020-05-27
- Cumulative updates relevant for ozone :

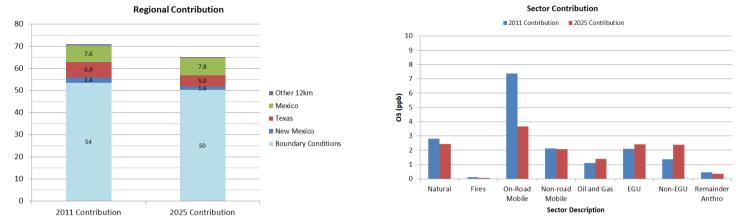
Feature	Туре	Version
Grid independent lighting NOx, biogenic and soil NOx emissions	Science	12.4.0
Updated offline biogenic emissions generated with GC 12.3.0	Science	12.5.0
Small alkyl nitrate chemistry	Science	12.7.0
Ozone deposition to the ocean	Science	12.8.0

http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem 12#12.8.1

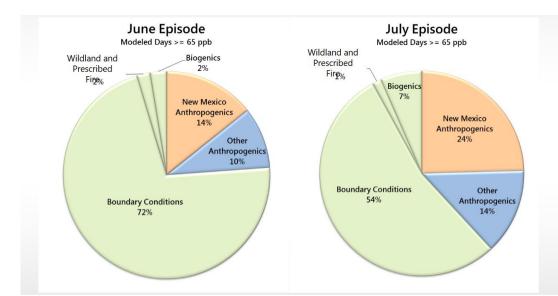
Conclusions: BCs from WRAP 2014 GEOS-Chem

- Initial WRAP 2014v1 CAMx and CMAQ simulations using EPA 2014 GEOS-Chem BCs exhibited large ozone overestimation bias year-round
 - Made it difficult to evaluate other model options (e.g., biogenic emissions)
- WRAP elected to conduct their own 2014 GEOS-Chem using new versions of the model and emission inventories in CAMx 2014v2 and RepBase simulation
 - Much better ozone model performance across the western states
- We more closely examined WRAP CAMx 2014v2 ozone model performance in New Mexico
 - CAMx 2014v2 ozone performance in New Mexico good mostly achieving ozone performance goals
- We examined WRAP CAMx RepBase ozone source apportionment at sites in New Mexico
 - Found approximately 60%-75% of ozone was due to BCs, BCs from natural sources higher (40-50%)
 - Higher BC ozone contribution in northwest than southeast Counties in New Mexico
- Few recent updates to GEOS-Chem could affect ozone but would likely not significantly affect ozone BCs and would affect costs and schedule

Task 1: Overview of Modeling Protocol


Modeling Protocol – 1. Introduction

- **1.1 New Mexico OAI Project Genesis**
- **1.2 Overview of NM OAI Study Modeling Approach**
- **1.3 Related Studies**
- **1.4 Conceptual Models for High Ozone in New Mexico**
- **1.5 Overview of the Modeling Approach**
- **1.6 Project Participants and Contacts**
- **1.7 Communication**
- **1.8 Schedule**



Modeling Protocol – 1. Introduction – 1.3 Related Studies

- Southern New Mexico Ozone Study (SNMOS)
 - Contributions to 2011 and 2025 Ozone Design Values at Desert View (2-3% due to NM)

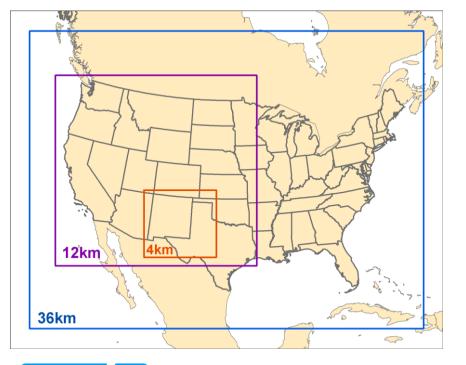
• City of Albuquerque Ozone Study – Contributions to Ozone in Albuquerque

Modeling Protocol – Model and Episode Selection

2. Model Selection

- Mainly Consistent with WRAP/WAQS 2014v2 and EPA 2016v1 modeling platforms
- CAMx Photochemical
 - Used in WRAP, SNMOS, EPA, Denver SIP, etc.
- WRF Meteorological
 - Current state-of-science
- SMOKE Emissions Processor
 - Most widely used Emissions Model
- MEGAN Biogenic Emissions
 - $_{\odot}$ $\,$ Selected over BEIS used in WRAP 2014v2 $\,$
- GEOS-Chem Global
 - For 36-km domain Boundary Conditions (BCs)

3. Episode Selection – May-Aug 2014


- Need to leverage existing photochemical modeling database so choose between 2014 or 2016
- Select 2014 because:
 - \circ Coincides with an NEI Year
 - Higher quality emissions with updates from western states (WRAP 2014v2)
 - Observed ozone close to ozone DVs
 - 2014 has more ozone exceedance days (8) than 2016 (3)

Modeling Protocol – Domain Selection and WRF Modeling

4. Domain Selection

- 36/12/4-km domains
- 4-km domain include New Mexico and O&G production areas in San Juan and Permian Basin

5. WRF Modeling

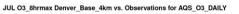
RF Option NM OAI Stud		2014 WAQS	2014/2015 EPA		
Vertical Coordinate	Hybrid	eta	eta		
Domains run	36/12/4-km	36/12/4-km	12-km		
Microphysics	Thompson	Thompson	Morrison 2		
LW Radiation	RRTMG	RRTMG	RRTMG		
SW Radiation	RRTMG	RRTMG	RRTMG		
LSM	Noah	Noah	Pleim-Xiu		
PBL scheme	YSU	YSU	ACM2		
Sfc Layer Physics	MM5 similarity	MM5 similarity	MM5 similarity		
Cumulus	lus 36/12/4-km Multi-scale Kain Fritsch		Kain-Fritsch		
BC, IC Analysis Nudging Source	12-km NAM/ERA5	12-km NAM	12-km NAM		
Analysis Nudging Grids	36/12-km	36/12-km	12-km		
Obs Nudging	None	4-km	None		
Sea Sfc Temp	Sfc Temp FNMOC		FNMOC		

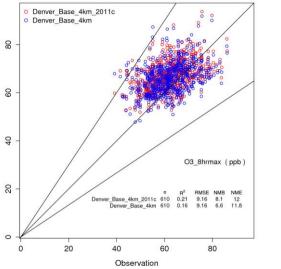
Modeling Protocol – 2014 Base Case & Model Performance Evaluation

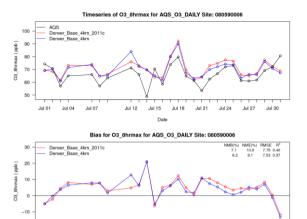
CAMX

6. CAMx 2014 Inputs Preparation

• CAMx Configuration and Options


Science Options	CAMX	Comment			
		Latest version of CAMx used in			
Model Codes	CAMX v7.0	WRAP/WAQS 2014v2 and EPA Regional			
		Haze modeling			
Horizontal Grid Mesh	36/12/4-km				
36-km grid	148 x 112 cells	36US domain			
12-km grid	227 x 215 cells	12WUS2 domain. Includes buffer cells			
4-km grid	245 x 227 cells	New Mexico 4-km domain. Includes buffer cells			
Vertical Grid Mesh	25 vertical layers, defined by WRF	Layer 1 thickness ~20 m. Model top at 50 mb (~19 km)			
Grid Interaction	36/12/4 km two-way nesting				
Initial Conditions	Start on May 1, 2014	First high ozone day is May 17, 2014			
Boundary Conditions	WRAP 2014 GEOS-Chem	For 36US domain			
Emissions					
	SMOKE, SMOKE-MOVES2014,	WRAP/WAQS 2014v2 emissions and			
Baseline Emissions Processing	MEGAN	EPA 2023fh for future year			
	Plume-in-Grid for major NO _X	Keep same PiG sources in 2014 and			
Sub-grid-scale Plumes	sources in New Mexico	2023 emission years			
Chemistry		, ,			
		Latest chemical reactions and kinetic			
Gas Phase Chemistry	CB6r4	rates with halogen chemistry (Yarwood			
		et al., 2010)			
Meteorological Processor	WRECAMX	Compatible with CAMx v7.0			
Horizontal Diffusion	Spatially varying	K-theory with Kh grid size dependence			
Vertical Diffusion	CMAQ-like Ky	Evaluate YSU Ky scheme			
Diffusivity Lower Limit	Ky-min = 0.1 to 1.0 m ² /s in lowest 100 m	Depends on urban land use fraction			
Deposition Schemes					
Dry Deposition	Zhang dry deposition scheme	(Zhang et. al, 2001; 2003)			
Wet Deposition	CAMx -specific formulation	rain/snow/graupel			
Numerics					
Gas Phase Chemistry Solver	Euler Backward Iterative(EBI)	EBI fast and accurate solver			
Vertical Advection Scheme	Implicit scheme w/ vertical velocity update	Emery et al., (2009a,b; 2011)			
Horizontal Advection Scheme	Piecewise Parabolic Method (PPM) scheme	Colella and Woodward (1984)			
Integration Time Step	Wind speed dependent	~0.5-1 min (4-km), 1-5 min (12-km), 5- 15 min (36-km)			


7. 2014 Base/Model Performance Evaluation


• Focus on ozone performance in NM 4-km Domain

Jul 01 Jul 04 Jul 07

- Ozone Performance Goals and Criteria
 - \circ NMB < 5% & NMB < 15%
- AMET evaluation tool
- Diagnostic Sensitivity Tests:
 - WRF/NAM vs. WRF/ERA5
 - YSU vs. CMAQ-like Kv
- MPE Graphical Displays

Jul 12 Jul 15

Jul 18 Jul 21 Jul 24 Jul 27 Jul 30

Modeling Protocol – Future Year Modeling

8. 2023 CAMx Modeling

- EPA 2023fh Emission Projections
- Natural Emissions at 2016 Levels
- 2023 Control Measure Sensitivity Modeling
 - \circ $\,$ Control assumptions to be provided by NMED $\,$
- 2023 Ozone Source Apportionment
 - Design Document to be reviewed by NMED
 - Geographic Regions
 - NM, TX, OK, CO, AZ, CA, Mex, Can
 - Source Sectors
 - Upstream Oil and Gas, Midstream Oil and Gas, EGU Point, Non-EGU Point, On-Road Mobile, Non-Road Mobile, Other Anthropogenic, Fires (WF, Rx and Ag), Natural, BC from International Anthropogenic Emissions, BC from US Anthropogenic Emissions, BC from Natural Sources, Initial Concentrations

9. Ozone Design Value (DV) Projections

• EPA recommended ozone DV projection approach uses the model in a relative sense to scale the observed ozone DVB

 $DVF_{2023} = DVB_{2014} \times RRF$

RRF = Σ MDA8 Ozone₂₀₂₃ / Σ MDA8 Ozone₂₀₁₄

 $DVB_{2014} = (DV_{2012-2014} + DV_{2013-2015} + DV_{2014-2016}) / 3$

10. Quality Assurance Project Plan (QAPP)

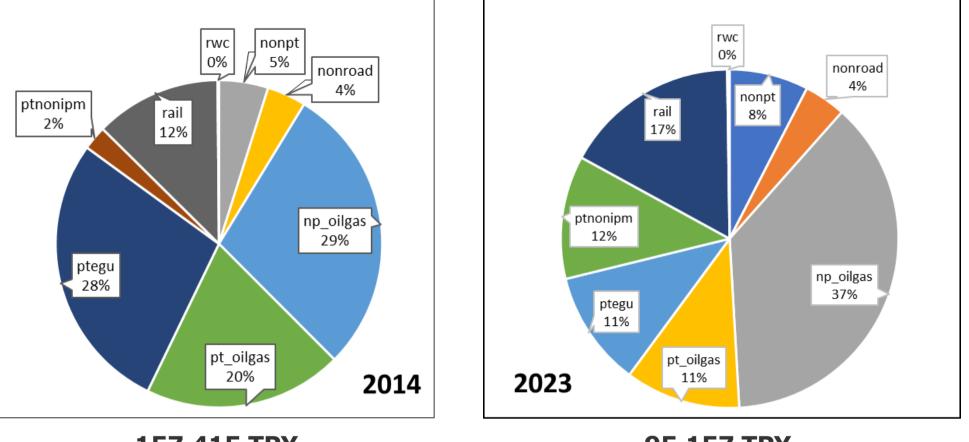
- Elements of QAPP built into sections of Modeling Protocol
- QA/QC critical component of all aspects of PGM modeling

11. References

New Mexico 2014 and 2023 Emissions

New Mexico Emissions Data

- 2014 base year anthropogenic emissions inventory for New Mexico will be based on the WAQS 2014v2 emissions
 - NMED will review the WAQS 2014v2 emissions and provide updates as needed
- 2023 anthropogenic emissions will be based on the EPA 2016v1 platform
- Onroad emissions based on SMOKE-MOVES processing with 2014 activity data and dayspecific hourly gridded 2014 WRF meteorology
- O&G emissions based on state-of-the-science O&G emissions estimates from the IWDW-WAQS platform

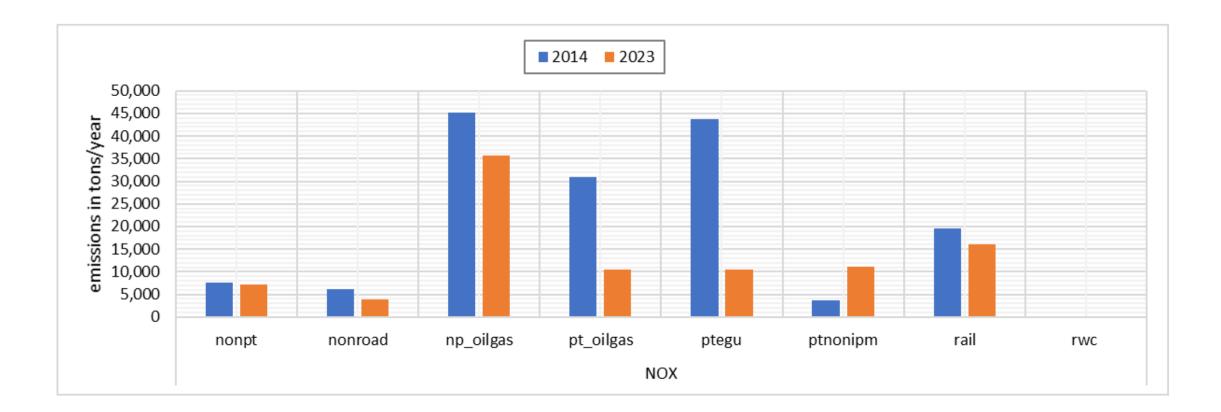


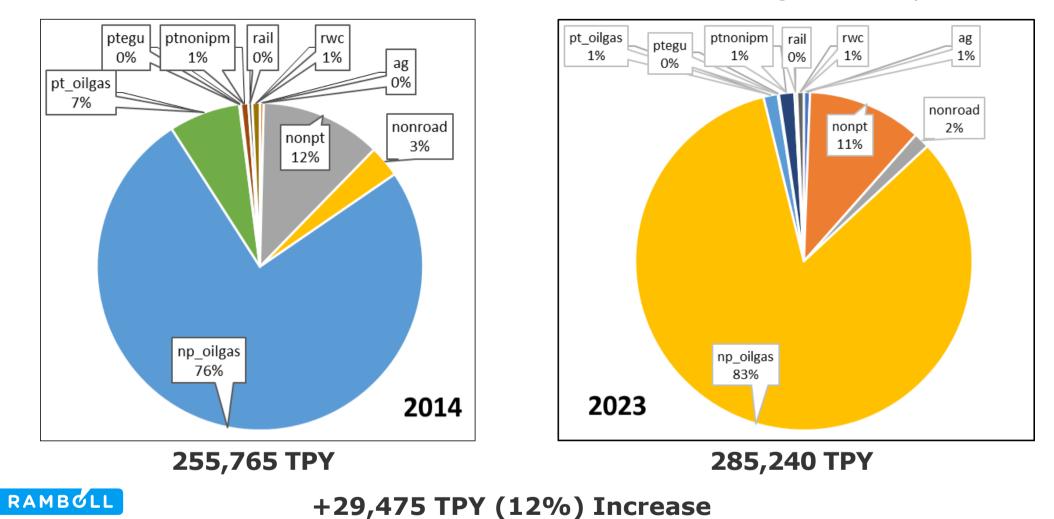
Emission Modeling Sector Description

Sector	Description					
afdust_adj	Area fugitive dust					
ag	Agricultural ammonia sources					
cmv_c1c2	Category 1 & 2 Marine Vessels					
cmv_c3	Category 3 Marine Vessels					
nonpt	Other nonpoint sources					
np_oilgas	Non-point Oil and Gas					
nonroad	Non-road mobile					
onroad	On-road mobile					
ptegu	EGU point sources					
ptnonipm	Non-EGU point sources					
pt_oilgas	Point Oil and Gas					
rail	Locomotive					
rwc	Residential Wood Combustion					

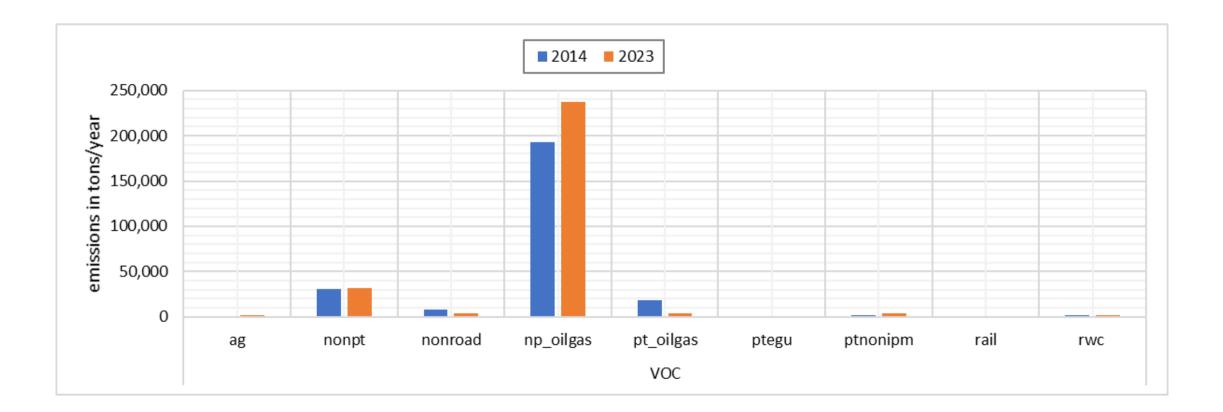
New Mexico Emissions: 2023 vs. 2014 NOx

All anthro source categories except onroad


157,415 TPY

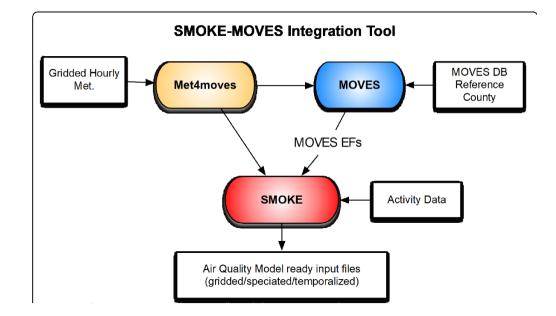

-62,258 TPY (40%) Reduction

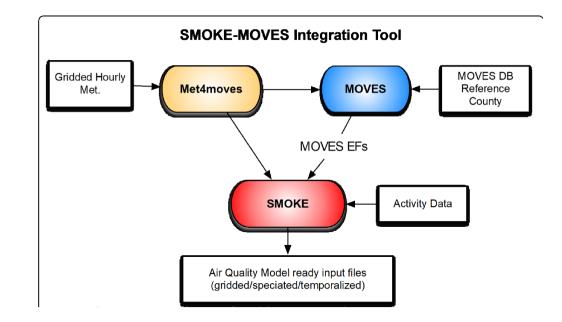
New Mexico Emissions: 2023 vs. 2014 NOx by Source Category



New Mexico Emissions: 2023 vs. 2014 VOC

All anthro source categories except onroad

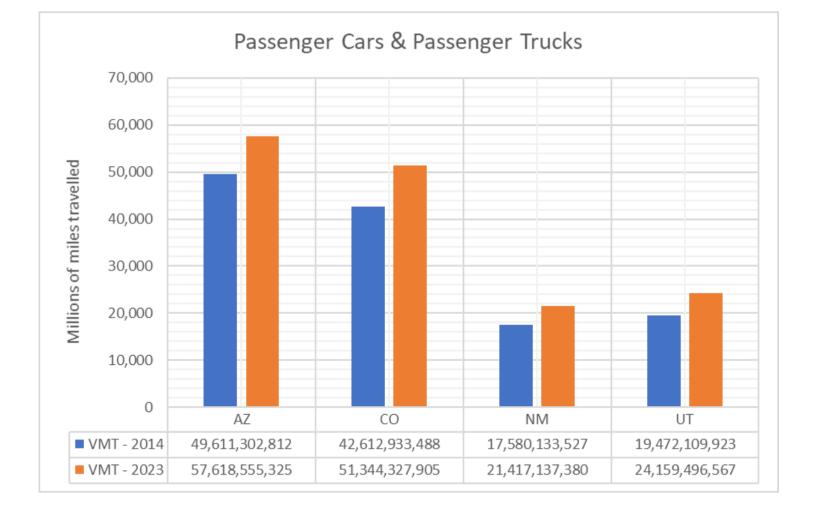

New Mexico Emissions: 2023 vs. 2014 VOC by Source Category


Overview of SMOKE-MOVES Processing

- Requires emission rate "lookup" tables generated by MOVES
 - EPA generated 2014 and 2023 MOVES "lookup" tables for modeling platform
- Uses gridded, hourly, day-specific temperatures
- Emission factors by temperature bin and speed for a series of "representative counties", to which every other county is mapped

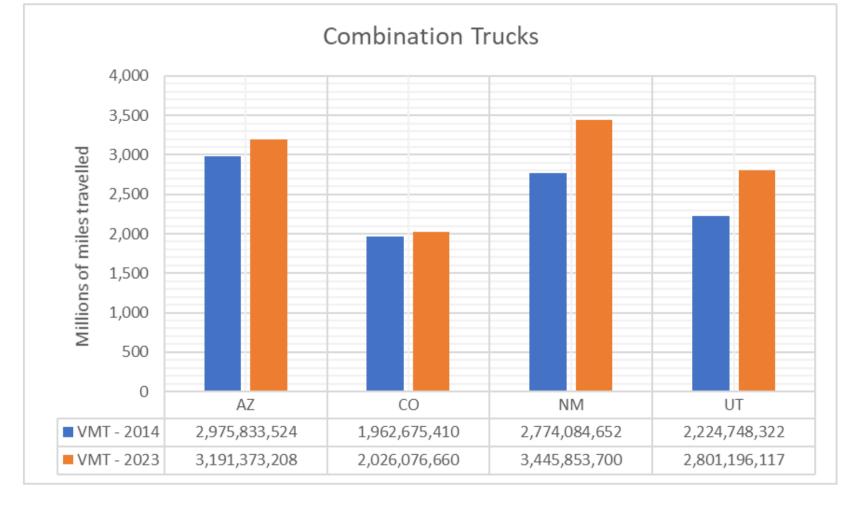
Creating Onroad Emissions using SMOKE-MOVES

- Met4MOVES: Meteorological data preprocessor
- SMOKE processing applies the emission factors to the activity data to compute grid-cell emissions
- Activity Data
 - Vehicle Miles Travelled (VMT)
 - $\circ~$ Vehicle Population
 - \circ Extended Idling Hours


Review of On-Road Mobile Source Activity Data

- Activity data from EPA emission modeling platform
- Developed a spreadsheet tool to assist NMED to review activity data for 13 WRAP states
 - Show 2014 and 2023 population and activity of on-road vehicles
- The tab "Dashboard" shows comparisons of vehicle population and VMT by state, vehicle type, fuel type and road type.
- The tab "Scaling_factor" provides ratio of future year/base year activities by state, vehicle type and fuel type.

Gasoline Vehicles VMT for NM and Neighboring States


- Gasoline passenger vehicles
- Overall EPA projected 21% VMT increase in 2023 from 2014 for New Mexico

Heavy-Duty Diesel Trucks VMT for NM and Neighboring States

- Heavy-duty diesel truck VMT
- Overall EPA estimated 24%
 VMT increase in 2023 from 2014

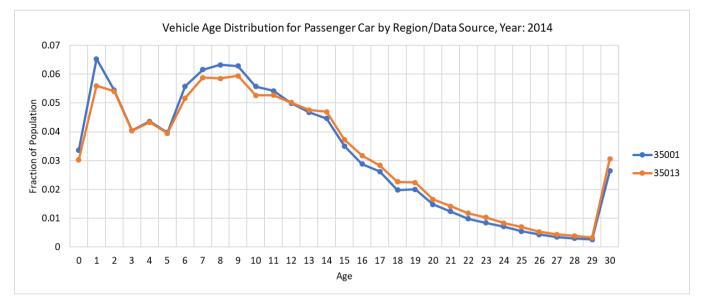
Example Plots that can be Created with the Tool

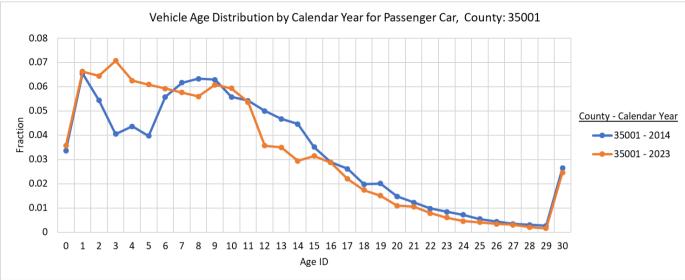
 Gasoline and Electric Passenger car VMT comparison for 2014 and 2023

 School bus population comparison for NM, AZ, UT and CO by fuel type

Color Currently selected opt	tion which contains Data		VehicleType 🗏 😵						
Currently selected option which does not contain Data Unselected option which contains Data			Combination Long-haul Truck	Combination Short-haul Truck	Intercity Bus	Light Commercial Truck	Motor Home		
Unselected option which does not contain Data			Passenger Car	Passenger Truck	Refuse Truck	School Bus	Single Unit Long-haul Truck		
Symbol denotes button is on multiple options in ea	- used to filter/deselect		Single Unit Short-haul Truck	Transit Bus	Motorcycle]			
Click to clear all filters	ch sincer by a single click		Vehicle Population						
Year ≋≣ 🔀 State		%≡ \ <u>x</u>		ck ■ Combination Short-haul Truck ■ Intercit			Passenger Car		
		MT	Passenger Truck	Refuse Truck School	Bus Single Unit Long-h	aul Truck Single Unit Short-haul Truck	Transit Bus		
2014 AZ 2023 ND	CA CO ID		120,000						
	NM NV OR	SD	vi 100,000						
UT	WA WY								
Activity Type		¥= 🏹	900,000						
Auxiliary Power Usage Hours	Extended Idle Usage	Hours	es/hc						
Vehicle Population	VMT		ehicle						
			uiles /						
FuelType	RoadType	≋ 🕅	E 40,000						
CNG	Off-Network		20,000						
Diesel	Rural Restricted Acces	is	20,000						
E-85	Rural Unrestricted Acc	cess							
Gasoline	Urban Restricted Acce	SS		2014		2023			
Electricity	Urban Unrestricted Ac	ccess			NM				
					Diesel				

• NM diesel vehicle population by vehicle type




• NM diesel and gasoline vehicle population by vehicle type

MOVES Inputs: Vehicle Age Distribution

- Vehicle age distribution for passenger cars
- The last bin of age distribution represents vehicles 30 year and older

MOVES Inputs: I&M Coverage

Inspection and Maintenance Coverage (imcoverage table)

	OVES2014b dej	faults						Compli	ance Factor (%)*			
Rep county			Range of ModelYears	Pollutant_Emissions Process	Passenger	Light Commercial	Passenger	Light Commercial	Passenger	Passenger	Single Unit Short-haul	Single Unit Short-haul
affected	Calendar Year	Program Test	affected	Affected	Car_Gasoline	Truck_Gasoline	Truck_Gasoline	Truck_Ethanol	Car_Ethanol	Truck_Ethanol	Truck_Gasoline	Truck_Ethanol
			1996_2012	CO_Running Exhaust	93.	1 93.:	93.1	L 93.:	l 93.1	93.1	93.1	93.1
				CO_Start Exhaust	93.	1 93.:	93.1	L 93.:	L 93.1	93.1	93.1	93.1
				NOx_Running Exhaust	93.	1 93.:	93.1	L 93.:	L 93.1	93.1	93.1	93.1
				NOx_Start Exhaust	93.	1 93.:	93.1	L 93.:	L 93.1	93.1	93.1	93.1
				THC_Running Exhaust	93.	1 93.:	93.1	L 93.:	L 93.1	93.1	93.1	93.1
		Exhaust OBD** Check		THC_Start Exhaust	93.	1 93.:	93.1	L 93.:	L 93.1	93.1	93.1	93.1
	2014	Evaporative Gas Cap	1975_2006	THC_Evap Fuel Vapor Venting							93.1	93.1
	2014	Check	1975_1995	THC_Evap Fuel Vapor Venting	93.	1 93.:	L 93.1	L 93.:	L 93.1	93.1		
			1975_1995	CO_Running Exhaust	93.	1 93.:	93.1	L 93.:	L 93.1	93.1	93.1	93.1
				CO_Start Exhaust	93.	1 93.:	93.1	L 93.:	L 93.1	93.1	93.1	93.1
		Two-mode, 2500		THC_Running Exhaust	93.	1 93.:	93.1	L 93.:	L 93.1	93.1	93.1	93.1
		RPM/Idle Test		THC_Start Exhaust	93.	1 93.:	93.1	L 93.1	L 93.1	93.1	93.1	93.1
		Evaporative System OBD	1996_2012	THC_Evap Fuel Vapor Venting	93.	1 93.:	93.1	L 93.1	L 93.1	93.1		
35001		Check	2007_2012	THC_Evap Fuel Vapor Venting							93.1	93.1
33001			1996_2021	CO_Running Exhaust	93.	1 93.:	l 93.1	L 93.1	L 93.1	93.1	93.1	93.1
				CO_Start Exhaust	93.	1 93.:	93.1	L 93.1	L 93.1	93.1	93.1	93.1
				NOx_Running Exhaust	93.	1 93.:	93.1	L 93.1	L 93.1	93.1	93.1	93.1
				NOx_Start Exhaust	93.	1 93.:	93.1	L 93.1	L 93.1	93.1	93.1	93.1
				THC_Running Exhaust	93.	1 93.:	93.1	L 93.1	L 93.1	93.1	93.1	93.1
		Exhaust OBD Check		THC_Start Exhaust	93.	1 93.:	93.1	L 93.1	L 93.1	93.1	93.1	93.1
	2023	Evaporative Gas Cap	1975_2006	THC_Evap Fuel Vapor Venting							93.1	93.1
	2025	Check	1975_1995	THC_Evap Fuel Vapor Venting	93.	1 93.:	93.1	L 93.1	L 93.1	93.1		
			1975_1995	CO_Running Exhaust	93.	1 93.:	93.1	L 93.1	L 93.1	93.1	93.1	93.1
				CO_Start Exhaust	93.	1 93.:	93.1	L 93.1	L 93.1	93.1	93.1	93.1
		Two-mode, 2500		THC_Running Exhaust	93.	1 93.:	93.1	L 93.1	L 93.1	93.1	93.1	93.1
		RPM/Idle Test		THC_Start Exhaust	93.	1 93.:	93.1	L 93.1	L 93.1	93.1	93.1	93.1
		Evaporative System OBD	1996_2021	THC_Evap Fuel Vapor Venting	93.	1 93.:	93.1	L 93.1	L 93.1	93.1		
		Check	2007_2021	THC_Evap Fuel Vapor Venting							93.1	93.1

Note: CDBs from 2016v1 and 2014v7.1 platforms did not include local/state IM coverage information. Platforms used MOVES defaults data where available.

MOVES2014b default database includes I/M coverage information only for Rep County 35001, other counties would be assumed to not have I/M program.

*The compliance factor represents the percentage of vehicles within a source type that actually receive the benefits of the program

**On-Board Diagnostics (OBD)

NM OAI Study Next Steps

Next Up in June 2020

- A little ahead of schedule (Task 3 completed month early)
- Need comments from NMED on Modeling Protocol and Work Plan
- Need approval from NMED to proceed with WRAP 2014v2 and EPA 2023 New Mexico emissions and mobile source assumptions
- Task 2.2 WRF modeling simulation will be finished in early June.
 - Conduct MPE and CAMx sensitivity test modeling
- Task 3 Evaluate BC data completed a month ahead of schedule (May instead of Jun)
- Task 4 -- Would like to start 2014 SMOKE and SMOKE-MOVES emissions modeling in June

