Prepared for: Western Regional Air Partnership Oil and Gas Working Group

Prepared by: John Grant, Rajashi Parikh, Amnon Bar-Ilan Ramboll US Corporation 7250 Redwood Blvd., Suite 105 Novato, California 94945

September 2019

Revised Final Report: Circa-2014 Baseline Oil and Gas Emission Inventory for the WESTAR-WRAP Region

Revised Final Report: Circa-2014 Baseline Oil and Gas Emission Inventory for the WESTAR-WRAP Region

CONTENTS

Executiv	re Summary	3
1.0	Introduction	5
1.1	Scope	5
1.1.1	Sources	5
1.1.2	Geographical Scope	6
1.1.3	Temporal Scope	7
1.1.4	Pollutants	7
1.2	Well Count and Production Data	8
2.0	Methodology	10
2.1	2014 WRAP OGWG Base Year O&G Emission Inventory version 1	10
2.2	Survey Updates for circa-2014 baseline inventory	11
2.2.1	Survey Content	11
2.2.2	Survey Distribution and Collection	12
2.2.3	Survey Collection	13
2.2.4	Operator Survey-Based Emission Inventory Updates	14
2.2.5	Agency Survey-Based Emission Inventory Updates	22
2.3	Other Updates for the circa-2014 Baseline Inventory	22
2.3.1	Colorado O&G Emissions	22
2.3.2	Williston Basin Casinghead Gas Emissions	23
3.0	Summary Results	26
3.1	Circa-2014 WRAP OGWG v2 emission inventory	26
3.1.1	Circa-2014 Comparison to 2014 Emission Inventories	29
3.1.2	2008, 2011, circa-2014 baseline summaries	31
4.0	References	33

Table of Figures

Figure 1-1.	Example Petroleum and Natural Gas Industry schematic.	6
Figure 1-2.	WESTAR-WRAP region, including major O&G basins.	7
Figure 2-1.	Tank VOC emissions sensitivity to capture efficiency.	19
Figure 2-2.	North Dakota flared natural gas (Jan 2011-Sept 2017).	24
-	2014 OGWG V2 nonpoint NOx emissions (tons/yr) by source category for top 7 highest emitting basins.	28
5	2014 OGWG V2 nonpoint VOC emissions (tons/yr) by source category for top 5 highest emitting basins.	29

Figure 3-3. Comparison of 2014 NEI, OGWG V1 and OGWG V2 NOx emissions by WRAP region State.	30
Figure 3-4. Comparison of 2014 NEI, OGWG V1 and OGWG V2 VOC emissions by WRAP region State.	30
Figure 3-5. Comparison of 2008, 2011 and 2014 OGWG V2 NOx emissions (tons/yr) for limited WRAP Basins".	32
Figure 3-6. Comparison of 2008, 2011 and 2014 OGWG V2 VOC emissions (tons/yr) for limited WRAP Basins ^{26,27,28} .	32

Table of Tables

Table ES-1. WESTAR-WRAP region O&G emissions by stat	e. 4
Table 1-1. WESTAR-WRAP region 2014 O&G activity by st	ate. 9
Table 2-1. Inventory data source by basin.	10
Table 2-2. Survey Content	12
Table 2-3. Operator survey distribution	13
Table 2-4. Returned operator surveys.	14
Table 2-5. Categories for which survey data applicable to inventory updates was submitted.	baseline 15
Table 2-6. Emission inventory basis for basins with drill rig	g survey 16
Table 2-7. Emission inventory basis for basins with hydrau engine survey data.	ulic fracturing 16
Table 2-8. Emission inventory basis for basins with oil tan data.	k survey 17
Table 2-9. Emission inventory basis for basins with conder survey data.	nsate tank 18
Table 2-10.Open thief hatch survey response summary.	18
Table 2-11. Emission inventory basis for basins with wellh survey data.	ead engine 20
Table 2-12.NOx and VOC Emission Changes by Source CaResulting from Integration of Operator Survey Data.	ategory 21
Table 2-13. NOx and VOC Emission Changes by Basin Res Integration of Operator Survey Data.	ulting from 21
Table 2-14. Alaska O&G emissions from small nonpoint so	ources. 22
Table 2-15. Williston Basin Casinghead Gas Emissions Cor	mparison. 25
Table 3-1. Summary of nonpoint and point NOx emissions basin.	s (tons/yr) by 26
Table 3-2. Summary of nonpoint and point VOC emissions Basin.	s (tons/yr) by 27

EXECUTIVE SUMMARY

This study provides estimates of criteria air pollutant and greenhouse gas emissions for oil and gas (O&G) exploration and production operations in the Western States Air Resources Council-Western Regional Air Partnership (WESTAR-WRAP) region for a circa-2014 baseline period. This analysis was sponsored by the Western Regional Air Partnership Oil and Gas Working Group (WRAP OGWG).

The WESTAR-WRAP region consists of 15 states in the Western US, several of which have substantial O&G exploration and production activities. Accurate O&G emission inventories are critical for air quality, including regional haze planning. In 2014, O&G activity in the WESTAR-WRAP Region included close to 12,000 spuds, over 225,000 active O&G wells, over 9 trillion cubic feet of natural gas production, and over 1 billion barrels of oil production. Over 70% of active wells in the WESTAR-WRAP region in 2014 were vertical wells and over 75% of spuds were horizontal or directional wells, indicating a shift from development of vertical to horizontal and directional wells.

To develop the circa-2014 WESTAR-WRAP region emission inventory base year 2014 emissions were compiled from existing emission inventory sources (described in Section 2.1). Subsequent to compilation of the base year 2014 emission inventory, outreach was conducted to gather additional data from regulatory agencies and upstream O&G operators to enhance the emissions inventory and, to the extent that data was provided, make the inventory applicable to the circa-2014 baseline period (described in Section 2.2). A survey data collection effort was used to collect new information to enhance emission inventory accuracy as part of the outreach effort. Survey data collection targeted specific equipment types, production areas, and operators that could substantially enhance the WESTAR-WRAP O&G emission inventory. The survey was first distributed to state agencies so that in-house agency data could be leveraged prior to asking O&G operators to provide survey data. After state agencies filled out the survey, it was distributed to O&G operators to fill remaining data gaps. O&G emissions from California are excluded from this analysis since California Air Resources Board is developing O&G emissions independently and results were not available for inclusion in this report. Williston Basin nonpoint casinghead gas emissions included in the 2014 base year were based on the EPA O&G Tool. Review of EPA O&G Tool casinghead gas input parameters resulted in the need for updates to Williston Basin casinghead gas emissions in the circa-2014 baseline inventory as described in Section 2.3.2.

Integrating the data collected as part of survey outreach into the circa-2014 baseline emission inventory resulted in NOx emissions increases of 5% over the WESTAR-WRAP region compared the base year 2014 WRAP emission inventory, primarily as a result of increased hydraulic fracturing engine activity and artificial lift engine power and prevalence. Volatile organic compound (VOC) emissions decreased by 19% over the WESTAR-WRAP region based on integration of operator survey data into the inventory, primarily as a result of increases to oil tank control prevalence.

State-level WESTAR-WRAP region O&G emissions by state are presented in Table ES-1.

Dellutent		(Criteria Air	Pollutan	t Emissio	ns (tons/yı) and Gree	enhouse	Gas Emis	sions (10	00 tons/yr)	
Pollutant	AK	AZ	CO ^a	ID	MT	ND	NM	NV	OR	SD	UT	WA	WY
NOx	43,291	1,960	44,088	889	7,231	67,526	81,188	156	454	920	16,379	444	46,171
VOC	27,449	280	137,455	34	36,912	304,083	185,269	269	73	9,449	112,485	36	264,821
CO	13,607	439	41,900	272	8,578	84,055	113,550	111	263	1,533	14,145	301	21,384
SOx	2,156	33	535	4	492	15,225	23,155	15	13	61	586	14	6,888
PM10	1,166	51	1,052	10	158	2,247	2,449	11	20	77	706	14	1,276
PM _{2.5}	1,098	51	1,000	10	158	2,141	2,449	11	20	77	706	14	1,276
CO ₂	0	1,183	794	245	1,785	28,777	20,204	99	210	928	5,777	201	11,096
CH4	0	<1	565	<1	137	340	705	<1	<1	11	529	<1	365
N ₂ O	0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
CO ₂ (e)	0	1,209	4,586	248	5,208	37,363	37,929	108	216	1,215	19,034	203	20,304

Table ES-1. WESTAR-WRAP region O&G emissions by state.

^a Source: Colorado Department of Public Health and Environment (CDPHE; 2019a, 2019b)

The contents of the report by Chapter are summarized as follows:

- Chapter 1.0 provides introductory information on study methodology, scope, and O&G activity in the WESTAR-WRAP region;
- Chapter 2.0 describes the steps taken to compile the emission inventory based on reference inventories, agency submitted data, and survey responses;
- Chapter 3.0 presents summaries of circa-2014 emissions.

1.0 INTRODUCTION

The WRAP OGWG is sponsoring the development of O&G emission inventories as part of efforts to support regional haze planning in the Western States Air Resources Council-Western Regional Air Partnership (WESTAR-WRAP) region. The O&G emission inventories developed under WRAP OGWG sponsorship will also facilitate other types of air quality planning (e.g., photochemical ozone modeling). More information about WRAP OGWG emission inventory development efforts may be found at the project webpage: https://www.wrapair2.org/ogwg.aspx.

This report describes the development of a criteria air pollutant and greenhouse gas (GHG) emissions inventory for O&G field operations in the WESTAR-WRAP region for a circa-2014 period, including point (midstream) and nonpoint (wellsite) sources. The baseline emissions inventory was compiled based on existing emission inventory sources and improvements based on collected survey data.

1.1 Scope

1.1.1 Sources

The emission inventory documented herein includes emissions from upstream and midstream O&G sources, consistent with the OGWG Road Map Scope of Work¹ and the OGWG Roadmap Phase I Report (Grant et al., 2018b). Downstream O&G emissions are not included. The baseline O&G emission inventory includes wellsite, gathering, and processing subsectors (items 1, 5, and 6 in Figure 1-1). Item 1) On-shore Petroleum and Natural Gas Production is referred to as "wellsite" sources; emissions from wellsite sources are typically classified as nonpoint sources². Items 5) Gathering and Boosting and 6) Gas Processing Plant are collectively referred to as "midstream" sources; emissions from midstream sources are typically classified as point sources. The classification of well-site emissions as nonpoint and midstream emissions as point sources is consistent with O&G emission inventory classifications used in the WRAP Phase III study³, West-wide Jumpstart Air Quality Modeling Study (WestJUMP AQMS)⁴, 2011 Western Air Quality Study⁵, and 2014 NEI methodology⁶.

¹ <u>https://www.wrapair2.org/pdf/11162017_WRAPO&GWorkgroup_RoadMapSOW.pdf</u>

² There are exceptions; for example, several wellsite sources in the Uinta Basin are available by facility and will be included in emission inventories as point source emissions.

³ <u>https://www.wrapair2.org/PhaseIII.aspx</u>

⁴ <u>https://www.wrapair2.org/WestJumpAQMS.aspx</u>

⁵ http://vibe.cira.colostate.edu/wiki/wiki/1018/3saqs-2011a-modeling-platform

⁶ https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-technical-support-document-tsd

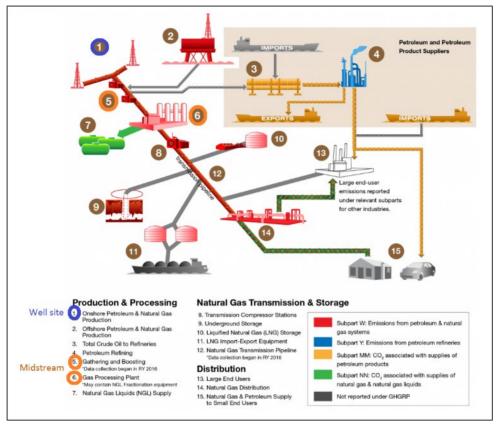


Figure 1-1. Example Petroleum and Natural Gas Industry schematic^{7,8}.

1.1.2 Geographical Scope

The WESTAR-WRAP region includes 15 states, several of which have substantial O&G production and generate substantial O&G emissions. Figure 1-2 shows major basins in the WESTAR-WRAP region. California O&G emissions are estimated by the California Air Resources Board and are not included herein. Several states have limited or zero O&G production and O&G sector emissions: Arizona, Hawaii, Idaho, Nevada, Oregon, South Dakota, and Washington. Emissions were estimated by county, distinguishing between tribal and non-tribal sources.

 $^{^{7} \} Source: \ \underline{https://www.epa.gov/ghgreporting/ghgrp-and-oil-and-gas-industry}$

⁸ This figure shows O&G subsectors for which emissions have been developed in this study. It is important to consider that Petroleum and Natural Gas Industry equipment is typically tailored to meet field, basin, and/or region-specific infrastructure requirements.

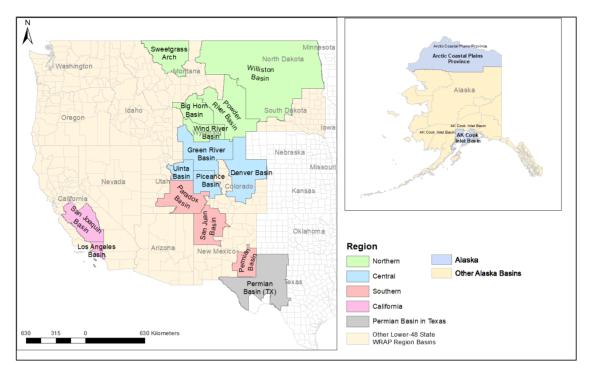


Figure 1-2. WESTAR-WRAP region, including major O&G basins.

1.1.3 Temporal Scope

The baseline emission inventory was developed with circa-2014 annual emissions. Base year 2014 emission inventories were the basis of the emission inventory compilation. The base year 2014 emission inventories were updated, to the extent that data was made available, to include emission rates for recent years 2016-2018 provided by regulatory agencies and O&G operators. In general, midstream facility emissions are derived from state and federal agency data for calendar year 2014. Wellsite input factors were developed for activities in calendar year 2014, with updates to input factors as described in Section 2.2. All well count and production data used to develop the emission inventory were obtained from the IHS Enerdeq database for calendar year 2014.

1.1.4 Pollutants

Emissions were estimated for the following pollutants;

- Nitrogen oxide (NOx)
- Volatile organic compounds (VOC)
- Carbon monoxide (CO)
- Particular matter less than 10 microns (PM₁₀)
- Particulate matter less than 2.5 microns (PM_{2.5})
- Sulfur oxides (SOx)
- Carbon dioxide (CO₂)
- Methane (CH₄)
- Nitrous oxide (N₂O)

1.2 Well Count and Production Data

Oil and gas related activity data were obtained from the IHS Enerdeq database⁹ queried via online interface. The IHS Enerdeq database uses data from each state's Oil and Gas Conservation Commission (OGCC or equivalent) as sources of information for oil and gas activity. This data is also available directly through database querying tools maintained by the respective agencies. It was determined that the IHS database is more accurate and complete than the state databases. The IHS database was also used to develop emission inventories in the WRAP Phase III, WestJump AQMS, and IWDW studies. Therefore, the IHS database was chosen as the basis for O&G activity statistics for this analysis. Two types of data were queried from the Enerdeq database: production data and well data. Production data includes information relevant to producing wells while well data includes information relevant to drilling activity ("spuds") and completions.

Production data were obtained for all counties in the WRAP region as IHS "298" format data files. The "298" well data contain information regarding historical O&G production. The "298" well data were processed with a PERL script to develop a database by American Petroleum Institute (API)-number, well type (oil, gas, or coalbed methane; CBM), spud type (directional, horizontal, or vertical), annual gas production, oil production, and water production with latitude and longitude information.

The API number in the IHS database consists of 14 digits as follows:

- Digits 1 to 2: state identifier
- Digits 3 to 5: county identifier
- Digits 6 to 10: borehole identifier
- Digits 11 to 12: sidetracks
- Digits 13 to 14: event sequence code (recompletions)

Based on the expectation that the first 10 digits, which include geographic and borehole identifiers, would predict unique sets of well head equipment, the unique wells were identified by the first 10 digits of the API number.

Well data were also obtained from the IHS Enerdeq database for all WRAP region states as IHS "297" well data. The "297" well data contain information on spuds and completions. The "297" well data were processed with a PERL script to arrive at a database of by-API-number and spud type, spud and completion dates with latitude and longitude information. Drilling events in 2014 were identified by indication that the spud occurred within 2014. If the well API number indicated the well was a recompletion, it was not counted as a drilling event, but if the API number indicated the well was a sidetrack, it was counted as a drilling event.

O&G activity for the WRAP Region states is summarized in Table 1-1; details by basin, spud type and well types are available in the 2014 O&G activity spreadsheet¹⁰.

⁹ All data queried from IHS Enerdeq is subject to copyright protections

¹⁰ https://www.wrapair2.org/pdf/WESTAR_OG_Activity_10Aug2018_distributed.xlsm

State	Spud Count	Active Well Count	Gas Production (BCF/yr)	Condensate and Oil Production (MMbbl/yr)
AK	115	2,079	3,157	168
AZ	0	64	<1	<1
CO	2,017	47,756	1,642	95
ID	3	1	<1	0
MT	174	10,515	66	30
ND	2,623	12,706	464	395
NM	1,358	51,140	1,244	125
NV	2	73	<1	<1
OR	0	16	1	0
SD	7	244	15	2
UT	839	13,021	450	41
WA	0	0	0	0
WY	1,044	35,615	1,998	76
Total	8,182	173,230	9,038	932

Table 1-1. WESTAR-WRAP region 2014 O&G activity by state.

2.0 METHODOLOGY

To develop the circa-2014 WESTAR-WRAP region emission inventory, first, base year 2014 emissions were compiled from existing emission inventory sources (described in Section 2.1). Subsequent to compilation of the base year 2014 emission inventory, outreach was conducted to gather additional data from regulatory agencies and upstream O&G operators to enhance the emissions inventory and, to the extent that data was provided, update the 2014 baseline emission inventory emission rates with survey-based emissions rates for recent years (described in Section 2.2).

2.1 2014 WRAP OGWG Base Year O&G Emission Inventory version 1

Ramboll compiled a WESTAR-WRAP region 2014 base year O&G emission inventory version 1 (also referred to herein as the WRAP OGWG v1 emission inventory)¹¹ from the following emission inventories:

- 2014 Greater San Juan and Permian Basin Emission Inventory (Grant et al., 2018a)
- 2014 Intermountain West O&G Basin Emission Inventory (Parikh et al., 2017)
- Uinta Basin 2014 Air Agencies Oil and Gas Emissions Inventory (Utah Division of Air Quality [UDAQ], 2017)
- Colorado Department of Health and Environment (CDPHE) Denver Basin Emission Inventory (CDPHE, 2018)
- US Environmental Protection Agency (EPA) 2014 NEI O&G Inventory, version 2 (EPA, 2018)¹²

O&G emissions on tribal land in the above studies included nonpoint emissions which were based on tribe specific emissions only if they were provided directly by a tribe (e.g., Southern Ute Indian Tribe in Grant et al. [2018a]); otherwise, tribal nonpoint emissions were typically estimated by apportioning county-level emissions to tribal and non-tribal land based on O&G activity. For inventories that did not fully distinguish tribal from non-tribal sources, tribal and non-tribal splits were added by allocating emissions according to the fraction of O&G activity surrogates on and off tribal land in each county. Point source emissions on tribal lands consist of Part 71 sources and other minor sources (e.g., sources reported under the Tribal Minor New Source Rule) to the extent that each inventory included those emission sources.

Table 2-1 shows data sources by basin used to compile the version 1 emission inventory.

Basin	State	Reference
Greater San Juan	CO and NM	Grant et al. (2018a)
Permian	NM	Grant et al. (2018a)
Denver	СО	Parikh et al. (2017) and CDPHE (2018)
Uinta	UT	Parikh et al. (2017) and UDAQ (2017)

Table 2-1. Inventory data source by basin.

¹¹ https://www.wrapair2.org/pdf/WESTAR_OGWG_Emissions_Inventory_2014_Webdistribution_081018.xlsx

¹² To extract emissions from the NEI, nonpoint emissions were extracted for all source classification (SCC) codes beginning with "2310". For point sources, O&G emissions were extracted for North American Industry Classification System (NAICS) codes: 2111, 4862, 21111, 48611, 48621, 211111, 211112, 213111, 213112, 486110, 486210.

Basin	State	Reference
Piceance	СО	
Paradox	СО	
Raton	СО	
Big Horn	WY and MT	
Powder River	WY and MT	Parikh et al. (2017)
Green River	WY	
Central Western Overthrust	WY	
Wind River	WY	
Williston	MT, ND and SD	
Sweetgrass Arch	МТ	
Central Montana Uplift	МТ	EPA (2018)

Emission inventory data gaps were filled to ensure completeness, to the extent feasible according to the following:

- PM_{2.5} emissions were not included in Grant et al. (2018a) and Parikh et al. (2017). PM_{2.5} emissions were assumed equivalent to PM₁₀ emissions taken from these reference sources.
- GHG emissions were not available in Parikh et al. (2017). GHG emissions were estimated by multiplying criteria air pollutant emissions for a given source category by a source category specific GHG-to-criteria air pollutant emissions mass ratio. For venting, fugitive, and tank sources, basin and well type specific GHG to VOC mass ratios available from the EPA O&G Tool were used. AP-42 process specific emission factors from the Greater San Juan and Permian Basin Inventory Study were used to estimate GHG to NOx emission ratios for combustion sources.

2.2 Survey Updates for circa-2014 baseline inventory

As part of technical improvements to the WESTAR-WRAP O&G emission inventory, a survey data collection effort was used to collect new information to enhance emission inventory accuracy. Survey data collection targeted specific equipment types, production areas, and operators that could substantially enhance the WESTAR-WRAP O&G emission inventory. First, the survey was distributed to state agencies so that in-house agency data could be leveraged prior to asking O&G operators to provide survey data. Tribes have had limited involvement in the WRAP OGWG and did not participate in the survey effort. After state agencies filled out the survey, it was distributed to O&G operators to fill remaining data gaps.

In this section survey results are applicable to baseline emission inventory updates are reported and integration into the baseline year inventory (also referred to herein as the WRAP OGWG v2 emission inventory) is described.

2.2.1 Survey Content

Survey content was decided upon in collaboration with the WRAP OGWG and focused on gathering information on several key O&G emissions source categories. Two surveys were developed, one survey requesting a complete set of inputs for each source category, and a second survey focused only on emission controls practices and technology related inputs. Each

agency decided whether to distribute the survey to operators and if the operators would fill out the complete or controls-focused survey.

Table 2-2 shows the source categories and associated data requested in the survey. Several tabs in the survey request *representative* O&G equipment configuration and operation data. Survey respondents were instructed to provide *representative* data that, as accurately as feasible, reflects configuration(s) that represent a vast majority of activity in a given basin. The request for representative inputs is consistent with the estimation of upstream O&G emissions as nonpoint sources. Surveyed agencies and operators were also given the option to provide data files with individual configurations, in addition to, or in place of representative data. The O&G survey is available online: complete survey¹³ and controls-focused survey¹⁴.

Source Category	Survey Data Fields					
	Upstream Exploration					
Drill Rigs	Spud type, well type, representative engine configuration (number, hours per spud, horsepower), engine age distribution, fleet turnover frequency					
Hydraulic Fracturing Engines	Spud type, well type, representative engine configuration (number, hours per spud, horsepower), engine age distribution, fleet turnover frequency					
	Upstream Production					
Condensate Tanks	Spud type, VOC flashing emission rate, control type and prevalence, capture efficiency and basis, inspection type and frequency					
Oil Tanks	Spud type, VOC flashing emission rate, control type and prevalence, capture efficiency and basis, inspection type and frequency					
Wellhead Engines	Spud type, well type, number of engines per well by function (compressor, artificial lift, etc.), representative engine configuration (number, hours per spud, horsepower), engine age distribution					
	Gas Composition					
Produced Gas	Extended gas composition by spud type and/or well type.					
Flash Gas Composition	Extended gas composition by spud type and/or well type					

Table 2-2. Survey Content

2.2.2 Survey Distribution and Collection

The survey was first provided to WRAP OGWG member state agencies. State agencies reviewed the survey and, if available, provided in-house agency data responses. State agencies determined whether they would distribute the survey to operators, and if so, whether to distribute the complete or controls-focused survey. Subsequently, the survey was distributed by agencies to select operators. Operators were responsible for contacting their drilling, hydraulic fracturing, etc. contractors to obtain relevant survey data.

¹³ <u>https://www.wrapair2.org/pdf/WRAP_OGWG_Survey_SelectSrc_08Jan2019.xlsx</u>

¹⁴ <u>https://www.wrapair2.org/pdf/WRAP_OGWG_Survey_ControlsOnly_08Jan2019.xlsx</u>

Survey distribution to operators, including supplemental outreach and operator activity data is described below.

- 1. Ramboll distributed the following materials to each WRAP OGWG state agency member:
 - a. Survey form
 - b. High priority operator list ranked by oil and gas (O&G) activity/ownership for each basin
 - c. Recommendations for survey collection and distribution
 - d. Survey cover letter template for agency survey distribution
- 2. Member state agency gathered survey data. Ramboll staff answered technical questions about the survey.
 - a. Each agency gathered survey data from internal agency sources and/or external sources such as O&G exploration and production companies.
 - b. If the agency chose to distribute the survey to O&G companies, the survey was distributed to the high priority operators chosen by the agency.
 - c. Each agency performed follow-up with operators the agency designated to fill out the survey to ensure that surveys were completed and submitted prior to the survey due date.

The type of survey distributed and the basins for which surveys were distributed is shown in Table 2-3.

	Distributing			
State	Agency	Basin	Survey Type	
		Big Horn	Complete	
		Central Montana Uplift	Complete	
Montana	MTDEQ	Powder River	Complete	
		Sweetgrass Arch	Complete	
		Williston	Complete	
New Mexico	NMED	Permian	Complete	
New Mexico	NIVIED	San Juan	Complete	
North Dakota	NDDOH	Williston	Complete	
		Denver	Controls-focused	
Wyoming	WYDEQ	Green River	Controls-focused	
		Powder River	Controls-focused	

Table 2-3. Operator survey distribution

2.2.3 Survey Collection

Several agencies provided data for specific O&G basins in response to the survey as indicated below.

- **Alaska** (Arctic Coastal Plains Province and Cook Inlet Basin): Baseline emission inventory updates.
- **Montana** (Central Montana Uplift, Sweetgrass Arch, and Williston Basin): Gas compositions.

- **Wyoming** (Denver Basin, Green River Basin, and Powder River Basin): 2014 and 2017 detailed operator submissions to be used in the estimation of future year control factors. *Applicable to future year emission inventory controls.*
- **Utah** (Uinta Basin): Engine age distributions to be used in the estimation of future year control factors. *Applicable to future year emission inventory controls*

A total of 42 operators surveys were collected, with the largest number of surveys (17) collected in the Williston Basin in North Dakota (see Table 2-4). Operator survey results are documented below.

		No. of	Percent of 2014 Basin-wide Activity Represented by Returned Surveys			
		Returned	Well	Oil	Gas	
State	Basin	Surveys	Count	Production	Production	
	Big Horn	1	5%	0%	6%	
	Central Montana Uplift	2	62%	5%	85%	
Montana	Powder River	1	23%	91%	90%	
	Sweetgrass Arch	2	23%	19%	53%	
	Williston	6	25%	64%	31%	
New	Permian	4	66%	80%	86%	
Mexico	San Juan	0	-	-	-	
North Dakota	Williston	17	11%	25%	26%	
	Denver	1	18%	46%	52%	
Wyoming ^a	Green River	4	46%	51%	53%	
	Powder River	4	4%	34%	13%	

Table 2-4.Returned operator surveys.

^a Control-focused survey, not applicable to baseline emission inventory improvements.

2.2.4 Operator Survey-Based Emission Inventory Updates

In this section operator survey results applicable to baseline emission inventory updates are reported and integration into the baseline year inventory is described. Table 2-5 shows, by basin, the categories for which operators submitted survey data. Emission inventory updates based on operator survey data are limited to the basins and source categories listed in Table 2-5.

Source Category	Big Horn Basin MT	Central Montana Uplift MT	Sweetgrass Arch MT	Powder River Basin MT	Permian Basin NM	Willisto MT	n Basin ND
Drilling	-	-	-	-	×	×	×
Hydraulic Fracturing	-	-	-	-	×	×	×
Tanks	×	×	×	×	×	×	×
Wellhead Engines	×	×	×	×	×	×	×
Gas Compositions	×	×	×	×	×	×	×

Table 2-5.	Categories for which survey	data applicable to	baseline inventory updates
was submitt	ted.		

For basins in which survey-based operator data was available for only one operator, if the operator represented greater than 10% of the O&G activity metric associated with a given source category, representative input factors were developed by assuming that the remaining O&G activity in the basin would have input factors equivalent to those used in the development of the WRAP OGWG v1 emission inventory. If the operator represented less than 10% of the O&G activity metric, a representative factor was not developed to preserve the confidentiality of a single operator's data.

2.2.4.1 Drill Rigs

Updated drill rig inputs were developed for the Permian Basin, Williston Basin in Montana, and Williston Basin in North Dakota (see Table A1). Rig activity per spud, estimated as total horsepower-hours (i.e., the product of number of engines, rated horsepower per engine, and hours per spud) decreased for each basin by 20%-53% relative to current inventory estimates. The average hours of engine activity per spud decreased substantially for the Williston Basin, from 481 to 236 hours per spud in Montana and from 507 to 259 hours per spud in North Dakota. Based on input from surveyed operators, this decrease in drill rig engine activity is consistent with factors such as recent declining spud counts which has led to older, less efficient rigs leaving the basin, drill bit and bit steering technology improvements, and efficiencies gained based on additional years of experience drilling in the basin. Permian Basin drill rigs were comprised almost exclusively of Tier 2 engines. For operators that indicated use of Tier 4 engines, those engines were described as "generators". Therefore, Tier 4 drill rig engines were assumed to meet stringent generator-set emission standards. The baseline emission inventory was updated to be based on the drill rig configuration inputs in Table A1 for the indicated basins.

Table 2-6 shows the basis of drill rig emissions for basins in which survey-based input factors were developed. Survey-based emission rates per spud were developed based on survey-based factors in Table A1 and multiplied by the number of horizontal spuds in each county in applicable basins to estimate emissions. These emissions replaced estimates of drill rig emissions from horizontal spuds in the WRAP OGWG v1 emission inventory. County-level emissions were apportioned to non-tribal and tribal land according to the fraction of spuds in each county on non-tribal and tribal land.

Decim	Horizo	ontal ^b	Vertical		
Basin	Non-tribal	Non-tribal Tribal		Tribal	
Permian	Survey-based ^a		OGWG v1	а	
	factors				
Williston (MT)	Survey-bas	Survey-based factors		G v1	
Williston (ND)	Survey-bas	Survey-based factors		G v1	

^a not applicable, no tribal activity

^b horizontal input factors were applied to directional wells

2.2.4.2 Hydraulic Fracturing Engines

Updated hydraulic fracturing engine inputs were developed for the Permian Basin and Williston Basin in North Dakota (see Table A2). Fracturing engine activity per spud, estimated as total horsepower-hours (i.e., the product of number of engines, rated horsepower per engine, and hours per spud) increased substantially compared to current inventory estimates; Permian Basin total horsepower-hours increased by approximately 8 times and Williston Basin increased by approximately 27 times. Horsepower-hour increases are being driven by more intensive hydraulic fracturing activities at horizontal wells than assumed for previous inventories. Emission rates also changed substantially from previous estimates, with substantial use of Tier 4 engines in both the Williston and Basin Permian Basin and use of both natural gas turbine and electrified engine configurations in addition to diesel engine configurations in the Permian Basin. Tier 4 engines in hydraulic fracturing pump arrays were assumed to meet Tier 4 mechanical drive standards consistent with Intermountain West O&G development project information¹⁵. Other, less prevalent engines with smaller rated-power per engine such as light plants or blenders were assumed to meet Tier 4 interim standards.

Table 2-7 shows the basis of hydraulic fracturing engine emissions for basins in which surveybased input factors were developed. Survey-based emission rates per fracturing event were developed based on survey-based factors in Table A2 and multiplied by the number of horizontal spuds in each county in applicable basins to estimate emissions; one hydraulic fracturing event was assumed per spud. These emissions replaced estimates of hydraulic fracturing engine emissions from horizontal wells in the WRAP OGWG v1 emission inventory. County-level emissions were apportioned to non-tribal and tribal land according to the fraction of spuds in each county on non-tribal and tribal land.

Pacin	Horizontal ^b		Vertical	
Basin	Non-tribal	Tribal	Non-tribal	Tribal
Permian	Survey-based factors	а	OGWG v1	а
Williston (ND & MT)	Survey-based factors		OGW	'G v1

Table 2-7.Emission inventory basis for basins with hydraulic fracturing enginesurvey data.

^a not applicable, no tribal activity

^b horizontal input factors were applied to directional wells

¹⁵ Email from National Park Service (Andrea Stacy) to Ramboll (John Grant), July 2, 2019.

2.2.4.3 Tanks

<u>Oil Tanks</u>

Updated oil tank inputs were developed for several O&G basins (see Table A3). There are substantial differences in oil tank input factors compared to input factors in the current inventory. For example, the fraction of uncontrolled tanks changed from 73% to 19% for the Permian Basin, from 14% to 1% for the Powder River Basin, from 17% to < 1% for horizontal and vertical wells in the Williston Basin. Decreases in the prevalence of uncontrolled tanks indicates that a higher fraction of tanks are being controlled to comply with regulations such as EPA New Source Performance Standard (NSPS) Subpart OOOO. Uncontrolled VOC flash emission factors decreased for several basins. For example, uncontrolled VOC flash emission factors decreased by 16% and 61% for oil tanks in the Williston Basin, in Montana and North Dakota, respectively. Flash emission factor decreases may result from factors such as better sampling and/or the use of more site-specific information in E&P Tank model runs and/or process simulation software in the submitted surveys compared to previously compiled emission inventory inputs.

Table 2-8 shows the basis of oil tank emissions for basins in which survey-based input factors were developed. Survey-based emission rates per barrel of oil produced were developed based on survey-based factors in Table A3 and multiplied by the amount oil production from horizontal or vertical wells in each county in applicable basins to estimate emissions. These emissions replaced estimates of oil tank emissions from horizontal wells and vertical wells in the WRAP OGWG v1 emission inventory. County-level emissions were apportioned to non-tribal and tribal land according to the fraction of oil production in each county from wells on non-tribal and tribal land.

Basin	Horizo	ontal ^b	Vertical		
DdSIII	Non-tribal	Tribal	Non-tribal	Tribal	
Central Montana Uplift	OGWG v1		Survey-based factors		
Permian	Survey-based ^a factors		OGWG v1	а	
Powder River (MT)	OGW	G v1	Survey-bas	sed factors	
Sweetgrass Arch	OGW	G v1	Survey-bas	sed factors	
Williston (MT)		Survey-ba	sed factors		
Williston (ND)		Survey-ba	ased factors		

Table 2-8. Emission inventory basis for basins with oil tank survey data.

^a not applicable, no tribal activity

^b horizontal input factors were applied to directional wells

Condensate Tanks

Updated condensate tank inputs were developed for the Sweetgrass Arch and Williston Basin in North Dakota and Montana (see Table A4). The fraction of uncontrolled tanks increased from 31% to 100% in the Sweetgrass Arch Basin and decreased from 8% to 4% and 8% to 1% in the Williston Basin, in Montana and North Dakota, respectively.

Table 2-9 shows the basis of condensate tank emissions for basins in which survey-based input factors were developed. Survey-based emission rates per barrel of condensate produced were developed based on survey-based factors in Table A4 and multiplied by the amount oil production from horizontal or vertical wells in each county in applicable basins to estimate emissions. These emissions replaced estimates of condensate tank emissions from horizontal wells and vertical wells in the WRAP OGWG v1 emission inventory. County-level emissions were apportioned to non-tribal and tribal land according to the fraction of condensate production in each county from wells on non-tribal and tribal land.

Table 2-9. Emission inventory basis for basins with condensate tank survey data.

Pacin	Horizo	ontal ^b	Vertical		
Basin	Non-tribal Tribal		Non-tribal Tribal		
Sweetgrass Arch	OGWG v1		Survey-based factors		
Williston (MT)	Survey-based factors		OGWG v1		
Williston (ND)	Survey-bas	sed factors	OGWG v1		

^a not applicable, no tribal activity

^b horizontal input factors were applied to directional wells

Capture Efficiency

For tanks with emission controls, capture efficiency represents the percent of uncontrolled emissions that are controlled by the control device. Open thief hatches result in uncontrolled fugitive tank emissions. Across all returned operator surveys, 20 condensate tank configurations and 51 oil tank configurations were submitted. 75% of condensate tank configuration and 57% of oil tank configuration responses included a response to the thief hatch status (summarized in Table 2-10). The overall average percent of thief hatches open was 2.8% for condensate tanks and 3.0% for oil tanks.

Table 2-10. Open thief hatch survey response summary	Table 2-10. C	Open thief hatch	survey response	summary
--	---------------	------------------	-----------------	---------

Operator Response	Survey Field: Percentage of Tanks Observed with Thief Hatches Open Number of Responses Condensate Tanks	Average Percentage of Tanks Observed with Thief Hatches Open
No Response / Not		
available	5	
Zero	7	2.8%
Minimal	3	
Non-zero Value	5	
	Oil Tanks	
No Response / Not tracked	29	
Zero	9	3.0%
Minimal	1	5.070
Non-zero Value	12	

Assuming that a tank with an open thief hatch emits VOCs at the uncontrolled tank VOC emission rate, a capture efficiency of 97% (i.e., 3% of tank emissions are not routed to the flare) would result in emissions that are 2.5 times higher for a 98% efficient control device and 1.6 times higher for 95% efficient control device (see Figure 2-1).

More study is needed to (1) develop robust capture efficiency estimates and (2) estimate VOC emission magnitude when a thief hatch is open; the increases in emissions estimated in Figure 2-1 are screening level estimates.

At this time, sufficient information is not available to extrapolate the average capture efficiency shown in Table 2-10 across the WESTAR-WRAP region. Variation in capture efficiency by production type and geography is not available. Therefore, capture efficiency is assumed to be 100%, consistent with previous inventories.

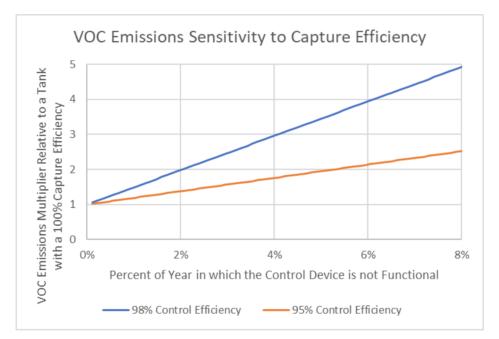


Figure 2-1. Tank VOC emissions sensitivity to capture efficiency.

2.2.4.4 Wellhead Engines

Updated wellhead configurations were developed for the basin and engine types listed below and are included in Table A5.

- Sweetgrass Arch Wellhead Compressors Engines: WRAP OGWG v1 input factors indicated zero activity from this source category. Operator submitted survey data indicated substantial use of wellhead compressors in this basin.
- **Bighorn Basin Lateral Compressor Engines:** Survey-based input factors are similar to WRAP OGWG v1 input factors.
- **Central Montana Uplift Lateral Compressor Engines:** Survey-based input factors include lower annual activity and higher prevalence compared to WRAP OGWG v1 input factors.

- Williston Basin Artificial Lift Engines: Survey-based input factors were developed by horizontal and vertical spud types for Montana and North Dakota. For each spud type and state, the survey-based input factors showed substantially higher electrification compared to the WRAP OGWG v1 input factors.
- **Permian Basin Artificial Lift Engines:** Survey-based input factors were developed by horizontal spud type for New Mexico. Survey-based input factors showed lower prevalence and electrification and higher average engine rated-power compared to the WRAP OGWG v1 input factors.
- Williston Basin Generators: Survey-based input factors were developed for generators operating at horizontal oil wells. Wellhead generators were not included in the WRAP OGWG v1 emission inventory. 11% of horizontal oil wells are estimated to have a generator.

Table 2-11 shows the basis of wellhead engine emissions for basins in which survey-based input factors were developed. Survey-based emission rates per active well were developed based on survey-based factors in Table A5 and multiplied by the number of active horizontal oil, horizontal gas, vertical oil, or vertical gas wells in each county in applicable basins to estimate emissions. These emissions replaced estimates of wellhead engine emissions in the WRAP OGWG v1 emission inventory. County-level emissions were apportioned to non-tribal and tribal land according to the fraction of active wells in each county from wells on non-tribal and tribal land.

	Engino		Horizo	ontal ^b	Ver	tical
Basin	Engine Type	Well Type	Non- tribal	Tribal	Non- tribal	Tribal
Sweetgrass Arch	Wellhead Compressors	Gas	OGW	/G v1		r-based tors
Bighorn Basin	Lateral Compressor	Gas	OGWG v1		Survey-based factors	
Central Montana Uplift	Lateral Compressor	Gas	OGWG v1		Survey-based factors	
Williston Basin (ND & MT)	Artificial Lift	Oil	Survey-based fac		sed factors	5
Permian Basin	Artificial Lift	Oil	,	/-based tors	OGW	/G v1
Williston Basin (ND & MT)	Generators	Oil	,	v-based tors		c

Table 2-11. Emission inventory basis for basins with wellhead engine survey data.

^a not applicable, no tribal activity

^b horizontal input factors were applied to directional wells

^c not applicable, generator engine inputs are not available for vertical wells in the survey or WRAP OGWG v1. No emissions are estimated for this engine type at vertical wells.

2.2.4.5 Emission Changes Resulting from Integration of Operator Survey Data

NOx emissions increased by 8% over the WESTAR-WRAP region based on integration of operator survey data into the inventory (see Table 2-12). Hydraulic fracturing engine emissions accounted for 54% of NOx emission increases. Operator surveys indicated the use of pump engine arrays with more engines and more operational hours than previous inventories. Emissions from artificial lift engines accounted for 33% of NOx emissions increases. Operator surveys indicated the use of artificial life engines with higher rated power than assumed in previous inventories. Emissions from drill rig emissions accounted for close to 100% of NOx emission decreases as a result of lower overall combined activity in horsepower-hours relative to previous inventories. VOC emissions decreased by 24% over the WESTAR-WRAP region based on integration of operator survey data into the inventory. VOC emission increases were small compared to VOC emission decreases. Emissions from oil tanks accounted for close to 100% of VOC emission decreases as a results of higher emission control prevalence.

	Emissions (tons/year)				
Basin	N	Ox	VOC		
Hydraulic Fracturing Engin		23,096	1,933		
Artificial Lift Engines		13,977	3,186		
Generator Engines		2,833	334		
Nonpoint Compressor Eng		2,025	31		
Drill Rigs		-17,812	-789		
Oil Tanks		858	-326,939		
Condensate Tanks		18	537		
Total Change		24,995	-321,708		
Percent Change		8%	-24%		

Table 2-12. NOx and VOC Emission Changes by Source Category Resulting fromIntegration of Operator Survey Data.

76% and 20% of NOx emission increases occurred in the Williston Basin (ND) and Permian Basin (NM), respectively. 87%, 8%, and 5% of NOx emission increases occurred in the Williston Basin (ND), Permian Basin (NM), and Williston Basin (MT), respectively.

	Emissions (tons/year)				
Basin	NOx	VOC			
Williston , ND	19,108	-280,542			
Permian , NM	4,900	-25,7 <mark>19</mark>			
Sweetgrass , MT	1,789	600			
Williston , MT	-1,036	-16,16 <mark>9</mark>			
Powder River , MT	-1	5			
Central Montana Uplift , M	226	116			
Big Horn , MT	9	0			
Total Change	24,995	-321,708			
Percent Change	8%	-24%			

Table 2-13. NOx and VOC Emission Changes by Basin Resulting from Integration ofOperator Survey Data.

2.2.5 Agency Survey-Based Emission Inventory Updates

The 2014 NEI v2 was the sole basis of Alaska O&G emissions in the WRAP OGWG v1 emission inventory. Alaska Department of Environmental Conservation (ADEC) noted that emissions from several facilities emitting below Title V thresholds were not included in the 2014 NEI v2. ADEC provided emissions for these sources (see Table 2-14) were added to the WRAP OGWG v2 emission inventory.

	Emissions (tons/year)					
Facility	NOx	VOC	СО	SO ₂	PM ₁₀	PM _{2.5}
Greater Prudhoe Bay Skid 50 Pad Transfer Station	39	а	а	39	а	а
Peak Base Shop, Peak						
Wellex, and Nabors Base Camp Facilities	56	18	44	5.3	11	а
Milne Point S Pad (CHOPS)	37	<1	14	11	<1	а
Alpine Satellite Drill Pad CD5	93	88	60	23	5	а
Arctic Wolf Camp	39	а	а	а	а	а
24 Man Skid Camp	41	а	а	а	а	а
Mustang Oil Field Development	186	110	216	9	7	7
Paxton Production Facility	57	29	50	<1	1	1
Gudenrath Compressor Station	76	<1	26	1	2	2
Baker Platform	88	10	28	11	6	а
NNA Grind and Inject Operation	86	а	а	а	а	а
Kenai Gas Field Pad 41-18	42	а	44	53	а	а
Cook Inlet Exploratory Drilling Program- Bluecrest / Buccaneer	17	8	49	5	4	а
Cosmopolitan Project - Bluecrest	64	62	94	35	12	a
Cosmopolitan Project - Buccaneer	21	25	59	12	4	а

Table 2-14. Alaska O&G emissions from small nonpoint sources.

^a Emissions not included in reference dataset and were set to zero in WRAP OGWG v2 inventory

2.3 Other Updates for the circa-2014 Baseline Inventory

2.3.1 Colorado O&G Emissions

Colorado O&G emissions were updated based on the data sources listed below; emissions from these data sources completely replaced Colorado O&G emissions, with the exception of

emissions on Ute Mountain Ute tribal land, which are based on Grant et. al (2018a) and did not change from the 2014 base year emission inventory.

- Colorado Department of Health and Environment (CDPHE) Colorado Statewide 2016 Emission Inventory (CDPHE; 2019a, 2019b)¹⁶
- Southern Ute Indian Tribe 2017 Emission Inventory (SUIT, 2019)

2.3.2 Williston Basin Casinghead Gas Emissions

Casinghead gas is a substantial source of emissions in the Williston Basin. The WRAP OGWG base year emission inventory for the Williston Basin is based on WRAP 2014 Oil and Gas Intermountain West Criteria Pollutant Emission Inventory Compilation¹⁷ which references 2014 National Emission Inventory version 1 (2014NEIv1) as the basis of Williston Basin nonpoint emissions. As part of circa-2014 baseline emission inventory development, emissions for specific source categories were updated based on survey data. Circa-2014 base year emissions were determined to be in accurate based on review of the associated EPA O&G Tool¹⁸ inputs :

- 1. Volume of casinghead gas that is not sent to pipeline per volume of oil production: 0.0268–0.0282 Mcf/bbl
- 2. 2-3% of casinghead gas is not sent to pipeline
- 3. 47% of casinghead gas not sent to pipeline is flared
- 4. 53% of casinghead gas not sent to pipeline is vented

Based on US Energy Information Administration (EIA) data¹⁹, much higher fractions of casinghead gas are not sent to pipeline in the Williston Basin than estimated in the EPA O&G Tool (v2.1). Additionally, the fraction of gas that is not sent to pipeline which is vented in the EPA O&G Tool (v2.1; 53%) is very high relative to the 2011 Williston Basin²⁰ emission inventory estimates of 0.3% vented (and 99.7% flared).

EIA publishes combined annual vented and flared gas volumes for several states¹⁹, including 2014 estimates for North Dakota. 2014 estimates are not available for Montana or South Dakota. EIA also published a write-up on North Dakota natural gas production flaring over the 2011 to 2017 period²¹. Figure 2-2 (source: EIA write-up²¹) indicates that during 2014, approximately 25% to 35% of natural gas produced in North Dakota was flared. EIA data¹⁹ indicates that 129,717 MMCF was vented and flared in 2014.

- ²⁰ Ramboll, 2014. 2011 Baseline and 2015 Projection Technical Memo.
- https://www.wrapair2.org/pdf/2011_2015_Williston_Basin_14Aug2014.pdf

¹⁶ Project schedule did not permit adding GHG emissions to Colorado statewide emissions from CDPHE (2019a, 2019b).

¹⁷ Parikh, R., J. Grant, A. Bar-Ilan. 2017. "Memorandum: 2014 Oil and Gas Intermountain West Criteria Pollutant Emission Inventories for Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming," Ramboll Environ. Prepared for Tom Moore, WESTAR-WRAP. June 2017.

¹⁸ EPA O&G Tool Version 2.1.

¹⁹ US EIA Natural Gas Gross Withdrawals: <u>https://www.eia.gov/dnav/ng/ng_prod_sum_a_EPG0_VGV_mmcf_a.htm</u>

²¹ <u>https://www.eia.gov/naturalgas/weekly/archivenew_ngwu/2017/11_30/#itn-tabs-0</u>

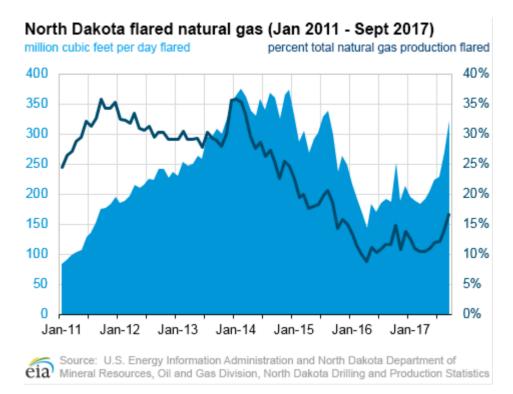


Figure 2-2. North Dakota flared natural gas (Jan 2011-Sept 2017).

Ramboll estimated revised Williston Basin casinghead gas emissions as described below. We applied the ideal gas law to estimate VOC, CH₄, and CO₂ emissions from vented gas and gas that is sent to flares, but not combusted (based on capture efficiency and control efficiency assumptions). Flaring combustion emission factors for NOx, CO, and CO₂ were based on AP-42 Section 13.5, for SO₂ were based on a mass balance assuming complete combustion of associated gas H₂S, for CH₄ were based on EPA SPECIATE database (Profile 0051), and for N₂O were based on API compendium²². Other input factors that were used to develop casinghead gas venting and flaring emissions for the Williston Basin are listed below:

- 1. Combined volume of gas flared and vented
 - North Dakota (ND): EIA¹⁹ (combined) volume of gas flared and vented estimates for year 2014: 129,717 MMCF/year, 29% of associated gas production, 0.33 MCF/bbl of oil production.
 - b. Montana (MT): EIA does not have MT venting and flaring estimates. We estimated the fraction of gas flared and vented for MT assuming the same ratio of (combined) flared and vented gas volume to statewide associated gas production volume as ND.
 - c. South Dakota (SD): same method as MT
- 2. Vented and flared split
 - a. We applied the 2011 Williston Basin emission inventory²⁰ estimate of 99.7% flared and 0.3% vented across all Williston Basin states.

²² American Petroleum Institute, August 2009, compendium of greenhouse gas emissions methodologies for the oil and natural gas industry, Table 4-11. <u>https://www.api.org/~/media/files/ehs/climate-change/2009_ghg_compendium.ashx</u>

3. Flaring efficiencies²⁰

- a. 90% control efficiency
- b. 100% capture efficiency
- 4. Gas properties for ideal gas law calculations
 - a. ND: ND Williston associated gas profile²³
 - b. MT: MT Williston associated gas profile²³
 - c. **SD** : ND Williston associated gas profile²³

Revised 2014 Williston Basin casinghead emission estimates are compared to WRAP OGWG v1 base year emission inventory estimates in Table 2-15. Williston Basin-wide revised 2014 emissions are 23.7x higher for NOx, 2.1x higher for VOC, and 24.4x higher for CO than original 2014 emissions. There were no SO_x emissions in the WRAP OGWG v1 base year emission inventory.

Pollutant	Williston Basin Casinghead Emissions (tons/yr)					
	мт	ND	SD	Total		
Origina	Original 2014 Base Year Emissions (WRAP OGWG)					
NOx	20	292	1	313		
VOC	6,718	98,388	443	105,549		
CO	105	1,541	7	1,653		
SOx	-	-	-	-		
	Revised 2014 Base Year Emissions					
NOx	330	6,869	229	7,428		
VOC	8,081	203,984	6,802	218,867		
CO	1,797	37,375	1,246	40,418		
SO _x	3	1,498	50	1,552		
Ratio of Revised to Previous 2014 Base Year Emissions						
NOx	16.6	23.6	174.6	23.7		
VOC	1.2	2.1	15.4	2.1		
CO	17.1	24.3	179.7	24.4		
SOx	no emissions in previous 2014					

Table 2-15. Williston Basin Casinghead Gas Emissions Comparison.

3.0 SUMMARY RESULTS

O&G emissions results for the circa-2014 WRAP OGWG v2 emission inventory for the WESTAR-WRAP region are presented below as a series of tables and charts. Additional summaries and fully detailed emission inventory data are available in spreadsheets that accompany this report which are posted on the WRAP OGWG website (https://www.wrapair2.org/OGWG.aspx).

3.1 Circa-2014 WRAP OGWG v2 emission inventory

Circa-2014 WRAP OGWG v2 NOx and VOC emissions for all WRAP region basins are summarized in Table 3-1 and Table 3-2, respectively. Across the WESTAR-WRAP region, most nonpoint O&G emissions are emitted from wellsite sources and point O&G emission are emitted from midstream sources. Approximately 59% of 2014 NOx emissions and over 87% of 2014 VOC emissions were from nonpoint sources. Basin specific nonpoint and point source contributions result from basin specific equipment and operational characteristics and infrastructure, and in some cases basin specific accounting. For example, the Uinta Basin includes several wellsite source categories in the point source emission inventory. The top-seven emitting basins account for approximately 80% of NOx emissions and the top-five basin and state combinations account for over 70% of VOC emissions.

	NOx Emissions (tons/yr)		
Basin and State	Nonpoint	Point	Total
Williston , ND	62,347	5,179	67,526
San Juan , NM	33,436	11,294	44,730
Arctic Coastal Plains Province, AK	1,384	34,348	35,732
Permian , NM	16,690	18,561	35,251
Powder River , WY	24,508	5,017	29,525
San Juan , CO	12,221	6,628	18,849
Denver , CO	13,034	5,292	18,326
Uinta , UT	886	14,161	15,047
Green River , WY	5,430	5,408	10,838
AK Cook Inlet Basin , AK	1,853	4,664	6,517
Piceance , CO	1,226	4,325	5,551
Williston , MT	2,896	482	3,378
Big Horn , WY	972	1,501	2,473
Sweetgrass , MT	2,128	313	2,441
Denver Basin , WY	1,733	33	1,766
Wind River , WY	235	1,334	1,569
Plateau Sedimentary Prov , AZ	-	1,468	1,468
Paradox , UT	923	300	1,223
Williston , SD	481	369	849
Other WRAP Basins	1,022	6,616	7,637
Total	183,405	127,293	310,698

Table 3-1. Summary of nonpoint and point NOx emissions (tons/yr) by basin.

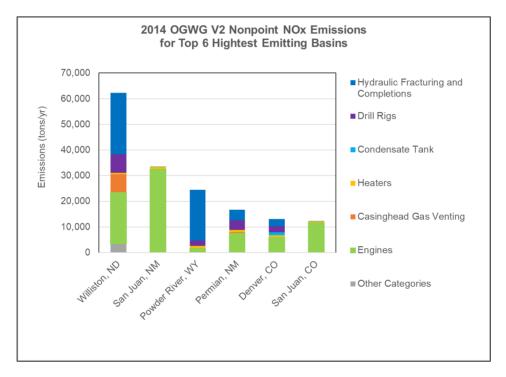
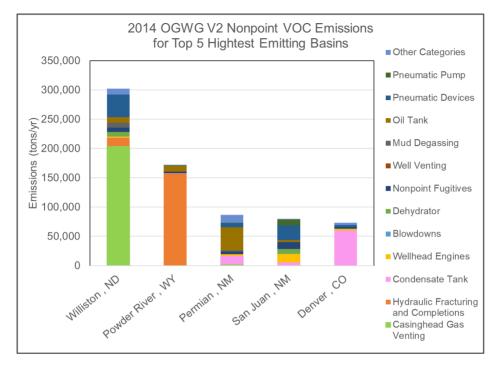

	VOC Emissions (tons/yr)		
Basin and State	Nonpoint	Point	Total
Williston , ND	302,259	1,825	304,083
Powder River , WY	172,453	4,658	177,112
Permian , NM	86,813	11,164	97,977
Uinta , UT	9,212	85,077	94,290
San Juan , NM	79,743	6,824	86,567
Denver , CO	73,073	5,558	78,631
Green River , WY	62,626	11,306	73,932
Piceance , CO	43,345	3,153	46,498
Williston , MT	28,161	705	28,866
Arctic Coastal Plains Province, AK	21,278	672	21,949
Paradox , UT	17,422	48	17,471
Williston , SD	9,422	11	9,433
Wind River , WY	6,601	1,424	8,025
Sweetgrass, MT	5,277	103	5,380
AK Cook Inlet Basin , AK	4,712	650	5,362
Big Horn , WY	3,523	513	4,036
North Park , CO	3,179	532	3,711
San Juan , CO	1,562	1,608	3,170
Green River , CO	1,899	803	2,701
Las Animas Arch , CO	1,980	246	2,226
Other WRAP Basins	6,157	1,037	7,194
Total	940,697	137,917	1,078,614

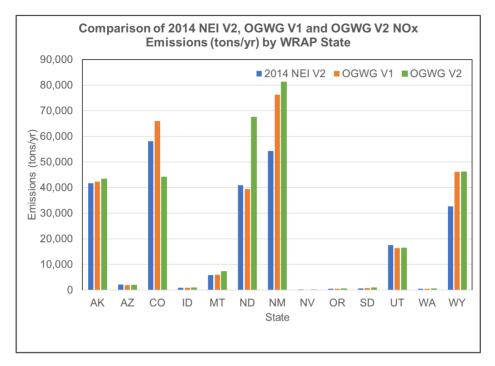
Table 3-2. Summary of nonpoint and point VOC emissions (tons/yr) by Basin.


Figure 3-1 and Figure 3-2 show NOx and VOC nonpoint emissions contributions, respectively, for basin and state combinations with the largest nonpoint emission contributions.

The largest source of nonpoint NOx emissions are hydraulic fracturing engines, wellhead engines, process heaters, condensate tanks, casinghead gas venting and drill rigs. Wellhead engines (including artificial lift engines, wellhead and lateral compressor engines, generators and other miscellaneous engines) are the largest contributor to nonpoint NOx emissions in the San Juan Basin (NM; 97%), San Juan Basin (CO; 97%), Denver Basin (CO; 47%) and Permian Basin (NM; 45%). Hydraulic fracturing engines are the largest contributor to NOx emissions for the Williston Basin (ND; 39%) and Powder River Basin (WY; 81%).

The largest nonpoint VOC emissions sources vary by basin. In the Williston Basin (ND), casinghead gas accounts for 67% of VOC emissions. In the Powder River Basin (WY), hydraulic fracturing and completion activities account for 91% of VOC emissions. In the Denver Basin (CO), condensate tanks account for 81% of VOC emissions. In the Permian Basin (NM), oil tanks account for 45% of VOC emissions. In the San Juan Basin (NM), pneumatic devices account for 32% of VOC emissions.

Figure 3-1. 2014 OGWG V2 nonpoint NOx emissions (tons/yr) contribution by source category for top 7 highest emitting basins.


Figure 3-2. 2014 OGWG V2 nonpoint VOC emissions (tons/yr) contribution by source category for top 5 highest emitting basins.

3.1.1 Circa-2014 Comparison to 2014 Emission Inventories

Changes from the 2014 NEI v2 to the 2014 base year WRAP OGWG v1 to the circa-2014 baseline WRAP OGWG v2 are shown below for NOx (Figure 3-3) and VOC (Figure 3-4).

Changes from 2014 NEI v2 to the WRAP OGWG v1 inventory are based on agency supplied emission inventory updates (e.g., Southern Ute Indian Tribe emissions, Colorado statewide nontribal emissions and Uinta Basin 2014 Air Agencies Oil and Gas Emissions Inventory); differences between NEI v2 emissions and the 2014 IWDW emission inventory that was the basis of WRAP OGWG v1 emission inventory for several states (e.g., Wyoming, Montana); and for the Greater San Juan (New Mexico) and Permian Basin (New Mexico), differences between Grant et al. (2018a) and the NEI v2. WESTAR-WRAP region-wide emission increased by 21% for NOx and decrease by 8% for VOC from 2014 NEI v2 to 2014 base year WRAP OGWG v2.

Changes from the WRAP OGWG v1 to the WRAP OGWG v2 emission inventory are based on updates per agency and operator survey responses, Colorado emission inventory updates, and Williston Basin casinghead gas emission inventory revisions. WESTAR-WRAP region-wide NOx emissions increased by 5% and VOC decreased by 19%. NOx emission increases for North Dakota, Montana, and New Mexico resulting from survey-based updates were the primary cause of WESTAR-WRAP region-wide NOx emission increases. VOC emission decreases for North Dakota, Montana, and New Mexico resulting from survey-based updates and Colorado emissions based on the new emission inventory provided CDPHE (2019a; 2019b) were the primary cause of WESTAR-WRAP region-wide VOC emission decreases.

Figure 3-3. Comparison of 2014 NEI, OGWG V1 and OGWG V2 NOx emissions by WRAP region State.

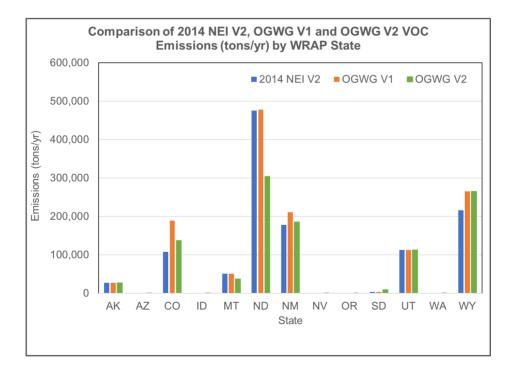


Figure 3-4. Comparison of 2014 NEI, OGWG V1 and OGWG V2 VOC emissions by WRAP region State.

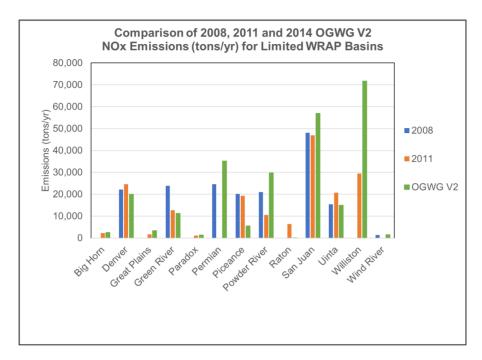
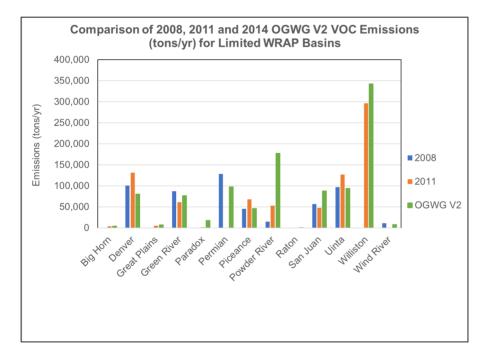

3.1.2 2008, 2011, circa-2014 baseline summaries

Figure 3-5 and Figure 3-6 show emission trends for WESTAR-WRAP basins which were included in the WestJUMP AQMS ²⁴ and/or WAQS ²⁵. The geographical extent of each basin is not always the same across these inventories, however, core O&G activity counties in each basin generally did not change across inventories.


Substantial NOx emission increases from the 2008 to circa-2014 inventory are noted for several basins, although emission increases appear to be moderated for several basins by lower emissions per unit of production based on regulatory controls and/or infrastructure configurations. Denver Basin emission decreases of 9% for NOx and 20% for VOC from 2008 to circa-2014 reflect decreases to emission rates given increases in Colorado O&G activity over the same period (e.g., 287% increase of Colorado-wide oil production from 2008 to 2016). Permian Basin NOx emission increases of 43% and VOC decreases of 24% from 2008 to circa-2014 are substantially less than the New Mexico-wide 143% oil production increase from 2008 to 2016. 2011 to circa-2014 Williston Basin NOx emission increases of 144% are slightly less and VOC increases of 15% are substantially less than are less than the North Dakota-wide oil production increases of 148% from 2011 to 2016. Increases in San Juan Basin NOx (18%) and VOC (56%) emissions from 2011 to circa-2014 are due primarily to updated emission inventory inputs and methodology in the 2014 Greater San Juan Basin emission inventory study (Grant et al. [2018a]). Changes in Uinta Basin emissions are expected to result from both oil and gas production changes and changes to emission inventory compilation methodology in the most recent Utah Agencies Uinta Basin emission inventory.

²⁴ <u>https://www.wrapair2.org/westjumpaqms.aspx</u>

²⁵ http://views.cira.colostate.edu/wiki/#WAQS

Figure 3-6. Comparison of 2008, 2011 and 2014 OGWG V2 VOC emissions (tons/yr) for limited WRAP Basins^{26,27,28}.

²⁶ Emissions for some basins are not available for 2008 or 2011.

 $^{\rm 27}$ Paradox and Raton 2011 emissions are limited to permitted sources.

²⁸ Great Plains includes emissions for Sweetgrass arch and Central Montana Uplift basins.

4.0 REFERENCES

- EPA. 2018. 2014 National Emissions Inventory, version 2. March 2018. US Environmental Protection Agency. February 2018. <u>https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data</u>
- CDPHE. 2018. Denver Basin, 9- County Non-Attainment Area Condensate Tank Emission Inventory. Personal Communication for Dale Wells (July 11, 2018). Colorado Department of Public Health
- CDPHE. 2019a. Email from CDPHE staff (Dale Wells), August 20, 2019. Colorado Department of Public Health and Environment
- CDPHE. 2019b. Email from CDPHE staff (Dale Wells), August 27, 2019. Colorado Department of Public Health and Environment
- Grant, J., R. Parikh, A. Bar-Ilan. 2018a. "San Juan and Permian Basin 2014 Oil and Gas Emission Inventory," Ramboll. Prepared for Western Regional Air Partnership and Western States Air Resources Council. January 2018. <u>https://www.wrapair2.org/pdf/2014 SanJuan Permian Baseyear EI Final Report 10Nov20</u> <u>17.pdf</u>
- Grant, J., R. Parikh, A. Bar-Ilan, 2018b. OGWG Road Map: Phase I Report Base and Future Year Emission Inventory Review and Work Plan Development, available at <u>https://www.wrapair2.org/pdf/OGWG Roadmap FinalPhase1Report Workplan 13Apr2018.p</u> <u>df</u>
- Parikh, R., J. Grant, A. Bar-Ilan. 2017. "Memorandum: 2014 Oil and Gas Intermountain West Criteria Pollutant Emission Inventories for Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming," Ramboll Environ. Prepared for Tom Moore, WESTAR-WRAP. June 2017. <u>http://vibe.cira.colostate.edu/wiki/Attachments/2014_OG/WESTAR_2014_OandG%20EI_Me</u> <u>mo_08Jun2017.pdf</u>
- SUIT. 2019. Email from SUIT Air Quality Technical Manager (Oakley Hayes), September 5, 2019. Southern Ute Indian Tribe.
- UDAQ. 2017. Uinta Basin: 2014 Air Agencies Oil and Gas Emissions Inventory. Utah Division of Environmental Quality. <u>https://deq.utah.gov/locations/U/uintahbasin/air-agencies-</u> <u>emissions-inventory/index.htm</u>

Appendix A

Survey-based Input Factors Updates for the Baseline Emission Inventory

Basin / Parameter	Survey - Based Factors	WRAP OGWG 2014 V1 Emission Inventory Input Factors	
Permian Basin (NM)			
Fraction of Spuds Represented	21%	not applicable	
Spud Type	Horizontal	Horizontal	
Well Type	Oil	Oil	
Fuel Type	Diesel	Diesel	
Number of Engine Per Rig (number/rig)	5	8	
Rated Horsepower (hp/engine)	1477	825	
Hours of Operation (hours/spud)	546	768	
Percent of Engines Electrified (%)	0%	25%	
Percent of Engines - Uncontrolled	0%		
Percent of Engines - Tier 1	0%		
Percent of Engines - Tier 2	21%	EPA 2014a MOVES	
Percent of Engines - Tier 3	0%	Defaults	
Percent of Engines - Tier 4	79%		
Average Engine Turnover Frequency (years)	а		
Williston Basin (MT)			
Fraction of Spuds Represented	43%	not applicable	
Spud Type	Horizontal	Horizontal	
Well Type	Oil	Oil	
Fuel Type	Diesel	Diesel	
Number of Engine Per Rig (number/rig)	2	2	
Rated Horsepower (hp/engine)	2193	2293	
Hours of Operation (hours/spud)	236	481	
Percent of Engines Electrified (%)	0%	0%	
Percent of Engines - Uncontrolled	0%		
Percent of Engines - Tier 1	0%	Emission factors	
Percent of Engines - Tier 2	100%	indicated a mix of engines up to Tier 4 certification	
Percent of Engines - Tier 3	0%		
Percent of Engines - Tier 4	0%		
Average Engine Turnover Frequency (years)	а		
Williston Basin (ND)			
Fraction of Spuds Represented	47%	not applicable	
Spud Type	Horizontal	Horizontal	
Well Type	Oil	Oil	
· · ·	01	01	

Table A1. Baseline Emission Inventory Inputs: Drill Rigs.

Basin / Parameter	Survey - Based Factors	WRAP OGWG 2014 V1 Emission Inventory Input Factors
Number of Engine Per Rig (number/rig)	4	2
Rated Horsepower (hp/engine)	1445	2206
Hours of Operation (hours/spud)	259	507
Percent of Engines Electrified (%)	23%	0%
Percent of Engines - Uncontrolled	0%	
Percent of Engines - Tier 1	0%	Emission factors
Percent of Engines - Tier 2	99%	indicated a mix of
Percent of Engines - Tier 3	1%	engines up to Tier 4
Percent of Engines - Tier 4	0%	certification
Average Engine Turnover Frequency (years)	5	

^a Not enough information is available to populate this field

Table A2. Baseline Emission Inventory Inputs: Hydraulic FracturingEngines.

Basin / Parameter	Survey - Based Factors	WRAP OGWG 2014 V1 Emission Inventory Input Factors
Permian Basin (NM)	1400010	
Fraction of Spuds Represented	19%	not applicable
Spud Type	Horizontal	All
Well Type	Oil	All
Configuration Type	Diesel Engine	Diesel Engine
Fraction of ICE Engine Configurations	95%	100%
Number of Engines Per Frac Job (number/frac)	22	10
Rated Horsepower (hp/engine)	1697	2313
Hours of Operation (hours/frac job)	109	23
Percent of Engines Electrified (%)	5%	0%
Percent of Engines - Uncontrolled	0%	
Percent of Engines - Tier 1	0%	
Percent of Engines - Tier 2	11%	EPA 2014a MOVES
Percent of Engines - Tier 3	0%	Defaults
Percent of Engines - Tier 4	84%	
Average Engine Turnover Frequency (years)	4	
Configuration Type	Turbine	Turbine
Fraction of Natural Gas Engine Configurations	5%	0%

Survey - Based Factors	WRAP OGWG 2014 V1 Emission Inventory Input Factors
49,000	-
70	-
100%	-
10	-
39%	not applicable
Horizontal	All
Oil	All
Diesel	Diesel
29	5
1356	1823
156	26
0%	0%
0%	
5%	Emission factors
35%	indicated a mix of
3%	engines up to Tier 4
56%	certification
3	
	Factors 49,000 70 100% 10 10 39% Horizontal Oil Diesel 29 1356 00% 5% 35% 3% 56%

Survey response was limited to one operator, comprising a very small fraction of activity, therefore, no input factors were developed.

Williston Basin (MT)

Survey response was limited to two operators comprising 2% of exploration activity. Recommend assuming that Willison Basin, Montana hydraulic fracturing inputs are equivalent to Williston Basin, North Dakota.

^a Not enough information is available to populate this field

Table A3. Baseline Emission Inventory Inputs: Oil Tanks.

Basin / Parameter Central Montana Uplift (MT)	Survey - Based Factors	WRAP OGWG 2014 V1 Emission Inventory Input Factors
Fraction of Oil Production Represented	8%	not applicable
Spud Type	Vertical	All
Tank Type	Oil Tank	Oil Tank

		WRAP OGWG 2014 V1 Emission
Basin / Parameter	Survey - Based Factors	Inventory Input Factors
Gas Venting Rate (MCF/bbl)	0.01	0.01
Uncontrolled Flash VOC EF (lb VOC/bbl)	1.40	1.75
Percent of Tanks - Uncontrolled	100%	47%
Percent of Tanks - Flares	0%	53%
Percent of Tanks - Vapor Recovery Unit (VRU)	0%	0%
Percent of Tanks - Other Device	0%	0%
Other Device Control Type Description	-	-
Inspection Type	Visual	
Frequency of Inspection (number/tank/year)	189	
Percent of Tanks - Open Thief Hatch	3%	
Percent of Tanks - Open Dump Valves	0%	
Annual Average Hours Controls are Offline -		а
Maintenance		
Annual Average Hours Controls are Offline -	а	
Other		
Other - Description		
Permian (NM)		
Fraction of Oil Production Represented	3%	not applicable
Spud Type	Horizontal	All
Tank Type	Oil Tank	Oil Tank
Gas Venting Rate (MCF/bbl)	0.03	0.01
Uncontrolled Flash VOC EF (lb VOC/bbl)	1.93	1.60
Percent of Tanks - Uncontrolled	19%	73%
Percent of Tanks - Flares	47%	27%
Percent of Tanks - Vapor Recovery Unit (VRU)	1%	0%
Percent of Tanks - Other Device	33%	0%
Other Device Control Type Description	Combustor	-
	LDAR/OGI/IR	
Inspection Type	Camera	
Frequency of Inspection (number/tank/year)	32	
Percent of Tanks - Open Thief Hatch	0%	
Percent of Tanks - Open Dump Valves	0%	а
Annual Average Hours Controls are Offline -		
Maintenance	36	
Annual Average Hours Controls are Offline - Other	0	
otici		

Basin / Parameter	Survey - Based Factors	WRAP OGWG 2014 V1 Emission Inventory Input Factors
Powder River Basin (MT)		
Fraction of Oil Production Represented	93%	not applicable
Spud Type	vertical	All
Tank Type	Oil Tank	Oil Tank
Gas Venting Rate (MCF/bbl)	0.02	0.04
Uncontrolled Flash VOC EF (lb VOC/bbl)	1.88	2.84
Percent of Tanks - Uncontrolled	1%	14%
Percent of Tanks - Flares	6%	86%
Percent of Tanks - Vapor Recovery Unit (VRU)	93%	0%
Percent of Tanks - Other Device	0%	0%
Other Device Control Type Description	-	-
Inspection Type	Routine	
Frequency of Inspection (number/tank/year)	12	
Percent of Tanks - Open Thief Hatch	0%	
Percent of Tanks - Open Dump Valves	0%	
Annual Average Hours Controls are Offline -		
Maintenance	24	а
Annual Average Hours Controls are Offline -		-
Other	8	
	Flare failures, site	
	upsets, equipment	
Other Description	failures, power	
Other - Description	losses	
Sweetgrass Arch (MT)	20%	not applicable
Fraction of Oil Production Represented		not applicable
Spud Type	vertical Oil Tank	All Oil Tank
Tank Type		
Gas Venting Rate (MCF/bbl) Uncontrolled Flash VOC EF (lb VOC/bbl)	0.01	0.01
Percent of Tanks - Uncontrolled	100%	47%
Percent of Tanks - Flares	0%	53%
Percent of Tanks - Vapor Recovery Unit (VRU)	0%	0%
Percent of Tanks - Other Device	0%	0%
Other Device Control Type Description	-	-
Inspection Type	visual	-
Frequency of Inspection (number/tank/year)	0	а
Percent of Tanks - Open Thief Hatch	0%	

		WRAP OGWG 2014
	Survey - Based	V1 Emission Inventory Input
Basin / Parameter	Factors	Factors
Percent of Tanks - Open Dump Valves	0%	
Annual Average Hours Controls are Offline -		
Maintenance		
Annual Average Hours Controls are Offline - Other	а	
Other – Description		
Williston Basin (MT)		
Fraction of Oil Production Represented	44%	not applicable
Spud Type	Horizontal	All
Tank Type	Oil Tank	Oil Tank
Gas Venting Rate (MCF/bbl)	0.04	0.06
Uncontrolled Flash VOC EF (lb VOC/bbl)	3.75	5.33
Percent of Tanks - Uncontrolled	1%	17%
Percent of Tanks - Flares	99%	83%
Percent of Tanks - Vapor Recovery Unit (VRU)	0%	0%
Percent of Tanks - Other Device	0%	0%
Other Device Control Type Description	Combustor	-
	LDAR/OGI/Visual/FLI	
	RR/AVO/site sound	
Inspection Type	smell	
Frequency of Inspection (number/tank/year)	12	
Percent of Tanks - Open Thief Hatch	4%	
Percent of Tanks - Open Dump Valves	0%	2
Annual Average Hours Controls are Offline -		а
Maintenance	13	
Annual Average Hours Controls are Offline -		
Other	132	
Other - Description	Equipment failure or	
	repair needed	
Williston Basin (MT)		
Fraction of Oil Production Represented	41%	not applicable
Spud Type	Vertical	All
Tank Type	Oil Tank	Oil Tank
Gas Venting Rate (MCF/bbl)	0.05	0.06
Uncontrolled Flash VOC EF (lb VOC/bbl)	4.50	5.33
Percent of Tanks - Uncontrolled	26%	17%
Percent of Tanks - Flares	74%	83%
Percent of Tanks - Vapor Recovery Unit (VRU)	0%	0%

Basin / Parameter	Survey - Based Factors	WRAP OGWG 2014 V1 Emission Inventory Input Factors
Percent of Tanks - Other Device	0%	0%
Other Device Control Type Description	-	-
Inspection Type	Routine	
Frequency of Inspection (number/tank/year)	12	
Percent of Tanks - Open Thief Hatch	0%	
Percent of Tanks - Open Dump Valves	0%	
Annual Average Hours Controls are Offline - Maintenance	24	а
Annual Average Hours Controls are Offline - Other	8	
Other - Description	Equipment failure or repair needed	
Williston Basin (ND)		
Fraction of Oil Production Represented	51%	not applicable
Spud Type	Horizontal	All
Tank Type	Oil Tank	Oil Tank
Gas Venting Rate (MCF/bbl)	0.08	0.07
Uncontrolled Flash VOC EF (lb VOC/bbl)	2.18	5.64
Percent of Tanks - Uncontrolled	0%	17%
Percent of Tanks - Flares	98%	83%
Percent of Tanks - Vapor Recovery Unit (VRU)	1%	0%
Percent of Tanks - Other Device	1%	0%
Other Device Control Type Description	Combustor	-
Inspection Type	LDAR/OGI/Visual/FLI RR/AVO	
Frequency of Inspection (number/tank/year)	7	
Percent of Tanks - Open Thief Hatch	9%	
Percent of Tanks - Open Dump Valves	5%	
Annual Average Hours Controls are Offline -		а
Maintenance	23	
Annual Average Hours Controls are Offline -		
Other	492	
Other - Description	Equipment failure or repair need	
Williston Basin (ND)		
Fraction of Oil Production Represented	24%	not applicable
Spud Type	Vertical	All

Basin / Parameter	Survey - Based Factors	WRAP OGWG 2014 V1 Emission Inventory Input Factors
Tank Type	Oil Tank	Oil Tank
Gas Venting Rate (MCF/bbl)	0.02	0.07
Uncontrolled Flash VOC EF (lb VOC/bbl)	1.33	5.64
Percent of Tanks - Uncontrolled	1%	17%
Percent of Tanks - Flares	99%	83%
Percent of Tanks - Vapor Recovery Unit (VRU)	0%	0%
Percent of Tanks - Other Device	0%	0%
Other Device Control Type Description	Combustor	-
Inspection Type	LDAR/OGI/Visual/ AVO	
Frequency of Inspection (number/tank/year)	4	
Percent of Tanks - Open Thief Hatch	0%	
Percent of Tanks - Open Dump Valves	1%	а
Annual Average Hours Controls are Offline -		a
Maintenance		
Annual Average Hours Controls are Offline - Other	а	
Other – Description	1	

^aNot enough information is available to populate this field

Table A4. Baseline Emission Inventory Inputs: Condensate Tanks.

		WRAP OGWG 2014
	Survey - Based	V1 Emission Inventory
Basin / Parameter	Factors	Input Factors
Sweetgrass Arch (MT)		
Fraction of Condensate Production Represented	14%	not applicable
Spud Type	Vertical	All
Tank Type	Condensate Tank	Condensate Tank
Gas Venting Rate (MCF/bbl)	0.13	0.15
Uncontrolled Flash VOC EF (lb VOC/bbl)	6.40	7.00
Percent of Tanks - Uncontrolled	100%	31%
Percent of Tanks - Flares	0%	69%
Percent of Tanks - Vapor Recovery Unit (VRU)	0%	0%
Percent of Tanks - Other Device	0%	0%
Other Device Control Type Description	-	-
Inspection Type	visual	2
Frequency of Inspection (number/tank/year)	12	а

	Survey - Based	WRAP OGWG 2014 V1 Emission Inventory
Basin / Parameter	Factors	Input Factors
Percent of Tanks - Open Thief Hatch	0%	
Percent of Tanks - Open Dump Valves	0%	
Annual Average Hours Controls are Offline - Maintenance		
Annual Average Hours Controls are Offline – Other	а	
Other – Description		
Williston Basin (MT)	L	
Fraction of Condensate Production Represented	65%	not applicable
Spud Type	Horizontal	All
Tank Type	Condensate Tank	Condensate Tank
Gas Venting Rate (MCF/bbl)	0.17	0.30
Uncontrolled Flash VOC EF (lb VOC/bbl)	11.36	14.08
Percent of Tanks - Uncontrolled	4%	8%
Percent of Tanks - Flares	95%	91%
Percent of Tanks - Vapor Recovery Unit (VRU)	0%	0%
Percent of Tanks - Other Device	1%	0%
Other Device Control Type Description	Combustor	-
Inspection Type	LDAR	
Frequency of Inspection (number/tank/year)	12	
Percent of Tanks - Open Thief Hatch	14%	
Percent of Tanks - Open Dump Valves	0%	
Annual Average Hours Controls are Offline - Maintenance	48	а
Annual Average Hours Controls are Offline - Other	480	
Other - Description	Equipment failure or repair needed	
Williston Basin (ND)		
Fraction of Condensate Production Represented	<1%	not applicable
Spud Type	Horizontal	All
Tank Type	Condensate Tank	Condensate Tank
Gas Venting Rate (MCF/bbl)	0.09	0.31
Uncontrolled Flash VOC EF (lb VOC/bbl)	10.53	14.72
Percent of Tanks - Uncontrolled	1%	8%
Percent of Tanks - Flares	99%	92%
Percent of Tanks - Vapor Recovery Unit (VRU)	0%	0%
Percent of Tanks - Other Device	1%	0%
Other Device Control Type Description	Combustor	-
Inspection Type		
Frequency of Inspection (number/tank/year)	а	а
Percent of Tanks - Open Thief Hatch]	

		WRAP OGWG 2014
	Survey - Based	V1 Emission Inventory
Basin / Parameter	Factors	Input Factors
Percent of Tanks - Open Dump Valves		
Annual Average Hours Controls are Offline – Maintenance	а	а
Annual Average Hours Controls are Offline – Other		
Other – Description		
Big Horn Basin (MT)		
Survey response was limited to one operator, comprising a very small fraction of activity, therefore, no input		
factors were developed.		
Central Montana Uplift (MT)		
Survey response was limited to one operator, comprising a very small fraction of activity, therefore, no input		
factors were developed.		

^aNot enough information is available to populate this field

Table A5. Baseline Emission Inventory Inputs: Wellsite Engines.

Basin / Parameter	Survey - Based Factors	WRAP OGWG 2014 V1 Emission Inventory Input Factors	
Sweetgrass Arch (MT) - Wellhead Compressor Engines			
Fraction of Well Count Represented	30%	not applicable	
Spud Type	Vertical	All	
Well Type	Gas	Gas	
Fuel Type	Natural Gas	Natural Gas	
Number of engines per well	1.0	0	
Rated Horsepower (hp/engine)	121	135	
Hours of Operation (hours/engine)	740	0	
Percent of Engines Electrified (%)	0%	0%	
Average Engine Turnover Frequency (years)	а	а	
If Other - Fuel Type	-	-	
If NG - Percent of Engines - Lean Burn	21%	30%	
If NG - Percent of Engines - Rich Burn	79%	70%	
Percent of Engines Meeting NSPS subpart JJJJ Standards	а	а	
Big Horn Basin (MT) - Lateral Compressor Engines			
Fraction of Well Count Represented	14%	not applicable	
Spud Type	Vertical	All	
Well Type	Gas	Gas	
Fuel Type	Natural Gas	Natural Gas	
Number of Wells per Engine	31	35	
Rated Horsepower (hp/engine)	237	271	

	WRAP OGWG 2014	
	Survey - Based	V1 Emission Inventory
Basin / Parameter	Factors	Input Factors
Hours of Operation (hours/engine)	8760	8760
Percent of Engines Electrified (%)	0%	0%
Average Engine Turnover Frequency (years)	40	а
If Other - Fuel Type	-	-
If NG - Percent of Engines - Lean Burn	20%	20%
If NG - Percent of Engines - Rich Burn	80%	80%
Percent of Engines Meeting NSPS subpart JJJJ Standards	а	а
Central Montana Uplift (MT) - Lateral Compressor Engines		-
Fraction of Well Count Represented	82%	not applicable
Spud Type	Vertical	All
Well Type	Gas	Gas
Fuel Type	Natural Gas	Natural Gas
Number of Wells per Engine	28	129
Rated Horsepower (hp/engine)	277	443
Hours of Operation (hours/engine)	4576	8559
Percent of Engines Electrified (%)	0%	0%
Average Engine Turnover Frequency (years)	а	а
If Other - Fuel Type	-	-
If NG - Percent of Engines - Lean Burn	11%	61%
If NG - Percent of Engines - Rich Burn	89%	39%
Percent of Engines Meeting NSPS subpart JJJJ Standards	а	а
Sweetgrass Arch (MT) - Artificial Lift Engines		
Survey response was limited to one operator, comprising a v	ery small fraction of acti	vity, therefore, no input
factors were developed.		
Williston Basin (MT) - Artificial Lift Engines	Г	
Fraction of Well Count Represented	48%	not applicable
Spud Type	Vertical	All
Well Type	Oil	Oil
Fuel Type	Natural Gas	Natural Gas
Number of natural gas engines per well	0.065	0.23
Rated Horsepower (hp/engine)	96	65
Hours of Operation (hours/engine)	6841	7930
Average Engine Turnover Frequency (years)	а	а
If Other - Fuel Type	-	-
If NG - Percent of Engines - Lean Burn	0%	0%
If NG - Percent of Engines - Rich Burn	100%	100%
Percent of Engines Meeting NSPS subpart JJJJ Standards	0%	а
Williston Basin (ND and MT) - Artificial Lift Engines		

Desin (Devenuetor	Survey - Based	WRAP OGWG 2014 V1 Emission Inventory
Basin / Parameter	Factors	Input Factors
Fraction of Well Count Represented	49%	not applicable All
Spud Type	Horizontal	
Well Type	Oil	Oil
Fuel Type	Natural Gas	Natural Gas
Total number of engines per well (ND)	0.51	0.22
Number of natural gas-fueled engines per well (MT)	0.065 ^b	0.22
Rated Horsepower (hp/engine) (ND)	242	70
Rated Horsepower (hp/engine) (MT)	87.5 ^b	70
Hours of Operation (hours/engine)	8322	8538
Percent of Engines Electrified (%)	76%	17%
Average Engine Turnover Frequency (years)	6	а
If Other - Fuel Type		-
If NG - Percent of Engines - Lean Burn	76%	0%
If NG - Percent of Engines - Rich Burn	24%	100%
Percent of Engines Meeting NSPS subpart JJJJ Standards	42%	а
Williston Basin (ND) - Artificial Lift Engines		
Fraction of Well Count Represented	10%	not applicable
Spud Type	Vertical	All
Well Type	Oil	Oil
Fuel Type	Natural Gas	Natural Gas
Number of engines per well	0.33	0.22
Rated Horsepower (hp/engine)	66	70
Hours of Operation (hours/engine)	8384	8538
Percent of Engines Electrified (%)	52%	17%
Average Engine Turnover Frequency (years)	18	а
If Other - Fuel Type	-	-
If NG - Percent of Engines - Lean Burn	48%	0%
If NG - Percent of Engines - Rich Burn	52%	100%
Percent of Engines Meeting NSPS subpart JJJJ Standards	а	а
Permian Basin (NM) - Artificial Lift Engines		
Fraction of Well Count Represented	19%	not applicable
Spud Type	Horizontal	All
Well Type	Oil	Oil
Fuel Type	Natural Gas	Natural Gas
Number of engines per well	0.42	0.97
Rated Horsepower (hp/engine)	373	21
Hours of Operation (hours/engine)	8760	4380
Percent of Engines Electrified (%)	14%	70%

Basin / Parameter	Survey - Based Factors	WRAP OGWG 2014 V1 Emission Inventory Input Factors		
Average Engine Turnover Frequency (years)	а	а		
If Other - Fuel Type	-	-		
If NG - Percent of Engines - Lean Burn	26%	0%		
If NG - Percent of Engines - Rich Burn	74%	100%		
Percent of Engines Meeting NSPS subpart JJJJ Standards	99%	а		
Williston Basin (MT and ND) – Generators				
Fraction of Well Count Represented	65%			
Spud Type	Horizontal			
Well Type	Oil			
Fuel Type	Natural Gas			
Number of engines per well (ND)	0.10			
Number of engines per well (MT)	0.015 ^b			
Rated Horsepower (hp/engine)	327			
Hours of Operation (hours/engine)	6094			
Percent of Engines Electrified (%)	16%			
Average Engine Turnover Frequency (years)	5.6			
If NG - Percent of Engines - Lean Burn	10%	а		
If NG - Percent of Engines - Rich Burn	90%			
Percent of Engines Meeting NSPS subpart JJJJ Standards	97%			
Fuel Type	Diesel			
Number of engines per well (ND)	0.09			
Number of engines per well (MT)	0.015 ^b			
Rated Horsepower (hp/engine)	222			
Hours of Operation (hours/engine)	8760			
Percent of Engines Electrified (%)	0%			
Average Engine Turnover Frequency (years)	3			
Percent of Engines Meeting NSPS subpart JJJJ Standards	а			
Permian Basin – Generators				

Survey response was limited to one operator. Since this source category is not included in the WRAP OGWG v2 emission inventory, it was not possible to develop input factors due to confidentiality considerations.

Permian Basin – Vapor Recovery Unit Engines

Survey response was limited to one operator. Since this source category is not included in the WRAP OGWG v2 emission inventory, it was not possible to develop input factors due to confidentiality considerations.

^aNot enough information is available to populate this field

^b Based on information provided by MTDEQ via email, June 25, 2019