Prepared for: Western Regional Air Partnership Oil and Gas Working Group

Prepared by: John Grant, Rajashi Parikh, Amnon Bar-Ilan Ramboll US Corporation 7250 Redwood Blvd., Suite 105 Novato, California 94945

June 2019

# Baseline 2014-2016 Oil and Gas Emission Inventory for the WESTAR-WRAP Region



# **Baseline 2014-2016 Oil and Gas Emission Inventory for the WESTAR-WRAP Region**

### CONTENTS

| Executi | ve Summary                                                 | 3  |
|---------|------------------------------------------------------------|----|
| 1.0     | Introduction                                               | 5  |
| 1.1     | Scope                                                      | 5  |
| 1.1.1   | Sources                                                    | 5  |
| 1.1.2   | Geographical Scope                                         | 6  |
| 1.1.3   | Temporal Scope                                             | 7  |
| 1.1.4   | Pollutants                                                 | 7  |
| 1.2     | Well Count and Production Data                             | 8  |
| 2.0     | Methodology                                                | 10 |
| 2.1     | 2014 WRAP OGWG Baseline O&G Emission Inventory version 1   | 10 |
| 2.2     | Survey Updates for 2014-2016 baseline inventory            | 11 |
| 2.2.1   | Survey Content                                             | 11 |
| 2.2.2   | Survey Distribution and Collection                         | 12 |
| 2.2.3   | Survey Collection                                          | 13 |
| 2.2.4   | Operator Survey-Based Emission Inventory Updates           | 14 |
| 2.2.5   | Agency Survey-Based Emission Inventory Updates             | 22 |
| 3.0     | Summary Results                                            | 24 |
| 3.1     | 2014-2016 WRAP OGWG v2 emission inventory                  | 24 |
| 3.1.1   | 2014-2016 Baseline Comparison to 2014 Emission Inventories | 27 |
| 3.1.2   | 2008, 2011, 2014-2016 baseline summaries                   | 28 |
| 4.0     | References                                                 | 30 |

### **Table of Figures**

| Figure 1-1. | Example Petroleum and Natural Gas Industry schematic.                                                  | 6  |
|-------------|--------------------------------------------------------------------------------------------------------|----|
| Figure 1-2. | WESTAR-WRAP region, including major O&G basins.                                                        | 7  |
| Figure 2-1. | Tank VOC emissions sensitivity to capture efficiency.                                                  | 19 |
| 5           | 2014 OGWG V2 nonpoint NOx emissions (tons/yr)<br>by source category for top 7 highest emitting basins. | 26 |
| -           | 2014 OGWG V2 nonpoint VOC emissions (tons/yr)<br>by source category for top 5 highest emitting basins. | 26 |
| 5           | Comparison of 2014 NEI, OGWG V1 and OGWG V2 NOx WRAP region State.                                     | 27 |

| Figure 3-4. Comparison of 2014 NEI, OGWG V1 and OGWG V2 VOC                                                                 |    |
|-----------------------------------------------------------------------------------------------------------------------------|----|
| emissions by WRAP region State.                                                                                             | 28 |
| Figure 3-5. Comparison of 2008, 2011 and 2014 OGWG V2 NOx emissions (tons/yr) for limited WRAP Basins".                     | 29 |
| Figure 3-6. Comparison of 2008, 2011 and 2014 OGWG V2 VOC emissions (tons/yr) for limited WRAP Basins <sup>17,18,19</sup> . | 29 |

### **Table of Tables**

| Table ES-1.                | WESTAR-WRAP region O&G emissions by state.                                    | 3  |
|----------------------------|-------------------------------------------------------------------------------|----|
| Table 1-1.                 | WESTAR-WRAP Region 2014 O&G activity.                                         | 9  |
| Table 2-1.                 | Inventory data source by basin.                                               | 10 |
| Table 2-2.                 | Survey Content                                                                | 12 |
| Table 2-3.                 | Operator survey distribution                                                  | 13 |
| Table 2-4.                 | Returned operator surveys.                                                    | 14 |
| Table 2-5.<br>inventory up | Categories for which survey data applicable to baseline odates was submitted. | 15 |
| Table 2-6.<br>data.        | Emission inventory basis for basins with drill rig survey                     | 16 |
| Table 2-7.<br>engine surve | Emission inventory basis for basins with hydraulic fracturing ey data.        | 16 |
| Table 2-8.<br>data.        | Emission inventory basis for basins with oil tank survey                      | 17 |
| Table 2-9.<br>survey data  | Emission inventory basis for basins with condensate tank                      | 18 |
| Table 2-10.                | Open thief hatch survey response summary.                                     | 18 |
| Table 2-11.<br>survey data | Emission inventory basis for basins with wellhead engine                      | 20 |
| Table 2-12.<br>Operator Su | NOx Emission Changes Resulting from Integration of<br>rvey Data.              | 21 |
| Table 2-13.<br>Operator Su | VOC Emission Changes Resulting from Integration of<br>rvey Data.              | 22 |
| Table 2-14.                | Alaska O&G emissions from small nonpoint sources.                             | 23 |
| Table 3-1.<br>basin.       | Summary of nonpoint and point NOx emissions (tons/yr) by                      | 24 |
| Table 3-2.<br>Basin.       | Summary of nonpoint and point VOC emissions (tons/yr) by                      | 25 |

## **EXECUTIVE SUMMARY**

This study provides estimates of criteria air pollutant and greenhouse gas emissions for oil and gas (O&G) exploration and production operations in the Western States Air Resources Council-Western Regional Air Partnership (WESTAR-WRAP) region for a 2014-2016 baseline period. This analysis was sponsored by the Western Regional Air Partnership Oil and Gas Working Group (WRAP OGWG).

The WESTAR-WRAP region consists of 15 states in the Western US, several of which have substantial O&G exploration and production activities. Accurate O&G emission inventories are critical for air quality, including regional haze planning. In 2014, O&G activity in the WESTAR-WRAP Region included close to 12,000 spuds, over 225,000 active O&G wells, over 9 trillion cubic feet of natural gas production, and over 1 billion barrels of oil production. Over 70% of active wells in the WESTAR-WRAP region in 2014 were vertical wells and over 75% of spuds were horizontal or directional wells, indicating a shift from development of vertical to horizontal and directional wells.

To develop the baseline 2014-2016 WESTAR-WRAP region emission inventory base year 2014 emissions were compiled from existing emission inventory sources (described in Section 2.1). Subsequent to compilation of the base year 2014 emission inventory, outreach was conducted to gather additional data from regulatory agencies and upstream O&G operators to enhance the emissions inventory and, to the extent that data was provided, make the inventory applicable to the 2014-2016 baseline period (described in Section 2.2). A survey data collection effort was used to collect new information to enhance emission inventory accuracy as part of the outreach effort. Survey data collection targeted specific equipment types, production areas, and operators that could substantially enhance the WESTAR-WRAP O&G emission inventory. The survey was first distributed to state agencies so that in-house agency data could be leveraged prior to asking O&G operators to fill remaining data gaps. O&G emissions from California are excluded from this analysis since California Air Resources Board is developing O&G emissions independently and results were not available for inclusion in this report.

Integrating the data collected as part of survey outreach into the 2014-2016 baseline emission inventory resulted in NOx emissions increases of 8% over the WESTAR-WRAP region compared the base year 2014 WRAP emission inventory. Hydraulic fracturing engine emissions accounted for 47% of nitrogen oxides (NOx) emission increases and emissions from artificial lift engines accounted for 38% of NOx emissions increases. Volatile organic compound (VOC) emissions decreased by 22% over the WESTAR-WRAP region based on integration of operator survey data into the inventory, primarily as a result of increases to oil tank control prevalence.

State-level WESTAR-WRAP region O&G emissions by state are presented in Table ES-1.

| Dellutent         | Criteria Air Pollutant Emissions (tons/yr) and Greenhouse Gas Emissions (1000 tons/yr) |       |         |     |        |         |         |     |     |       |         |     |         |
|-------------------|----------------------------------------------------------------------------------------|-------|---------|-----|--------|---------|---------|-----|-----|-------|---------|-----|---------|
| Pollutant         | AK                                                                                     | AZ    | СО      | ID  | МТ     | ND      | NM      | NV  | OR  | SD    | UT      | WA  | WY      |
| NOx               | 43,291                                                                                 | 1,960 | 65,985  | 889 | 9,265  | 57,706  | 78,940  | 156 | 454 | 693   | 16,379  | 444 | 46,171  |
| VOC               | 27,449                                                                                 | 280   | 189,113 | 34  | 35,714 | 197,658 | 185,088 | 269 | 73  | 3,090 | 112,485 | 36  | 264,821 |
| CO                | 13,607                                                                                 | 439   | 56,710  | 272 | 7,955  | 52,690  | 113,550 | 111 | 263 | 496   | 14,145  | 301 | 21,384  |
| SOx               | 2,156                                                                                  | 33    | 710     | 4   | 946    | 9,574   | 23,155  | 15  | 13  | 13    | 586     | 14  | 6,888   |
| PM10              | 1,166                                                                                  | 51    | 1,929   | 10  | 170    | 1,336   | 2,393   | 11  | 20  | 77    | 706     | 14  | 1,276   |
| PM <sub>2.5</sub> | 1,098                                                                                  | 51    | 1,929   | 10  | 170    | 1,336   | 2,393   | 11  | 20  | 77    | 706     | 14  | 1,276   |

#### Table ES-1. WESTAR-WRAP region O&G emissions by state.

| Pollutant           | Criteria Air Pollutant Emissions (tons/yr) and Greenhouse Gas Emissions (1000 tons/yr) |       |        |     |       |        |        |     |     |     |        |     |        |
|---------------------|----------------------------------------------------------------------------------------|-------|--------|-----|-------|--------|--------|-----|-----|-----|--------|-----|--------|
| Pollutant           | AK                                                                                     | AZ    | СО     | ID  | MT    | ND     | NM     | NV  | OR  | SD  | UT     | WA  | WY     |
| CO <sub>2</sub>     | N/A                                                                                    | 1,183 | 11,101 | 245 | 2,254 | 18,303 | 19,954 | 99  | 210 | 584 | 5,777  | 201 | 11,096 |
| CH <sub>4</sub>     | N/A                                                                                    | 1     | 225    | <1  | 138   | 247    | 705    | <1  | <1  | 4   | 529    | <1  | 365    |
| N <sub>2</sub> O    | N/A                                                                                    | <1    | <1     | <1  | <1    | <1     | <1     | <1  | <1  | <1  | <1     | <1  | <1     |
| CO <sub>2</sub> (e) | N/A                                                                                    | 1,209 | 18,583 | 248 | 5,712 | 24,541 | 37,677 | 108 | 216 | 699 | 19,034 | 203 | 20,304 |

The contents of the report by Chapter are summarized as follows:

- Chapter 1.0 provides introductory information on study methodology, scope, and O&G activity in the WESTAR-WRAP region;
- Chapter 2.0 describes the steps taken to compile the emission inventory based on reference inventories, agency submitted data, and survey responses;
- Chapter 3.0 presents summaries of baseline 2014-2016 emissions.

## **1.0 INTRODUCTION**

The WRAP OGWG is sponsoring the development of O&G emission inventories as part of efforts to support regional haze planning in the Western States Air Resources Council-Western Regional Air Partnership (WESTAR-WRAP) region. The O&G emission inventories developed under WRAP OGWG sponsorship will also facilitate other types of air quality planning (e.g., photochemical ozone modeling). More information about WRAP OGWG emission inventory development efforts may be found at the project webpage: <a href="https://www.wrapair2.org/ogwg.aspx">https://www.wrapair2.org/ogwg.aspx</a>.

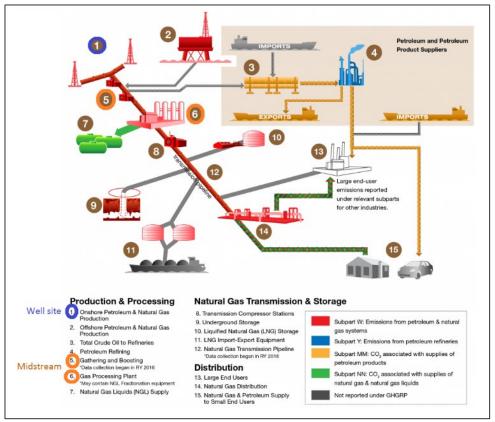
This report describes the development of a criteria air pollutant and greenhouse gas (GHG) emissions inventory for O&G field operations in the WESTAR-WRAP region for a baseline 2014-2016 period, including point (midstream) and nonpoint (wellsite) sources. The baseline emissions inventory was compiled based on existing emission inventory sources and improvements based on collected survey data.

#### 1.1 Scope

#### 1.1.1 Sources

The emission inventory documented herein includes emissions from upstream and midstream O&G sources, consistent with the OGWG Road Map Scope of Work<sup>1</sup> and the OGWG Roadmap Phase I Report (Grant et al., 2018b). Downstream O&G emissions are not included. The baseline O&G emission inventory includes wellsite, gathering, and processing subsectors (items 1, 5, and 6 in Figure 1-1). Item 1) On-shore Petroleum and Natural Gas Production is referred to as "wellsite" sources; emissions from wellsite sources are typically classified as nonpoint sources<sup>2</sup>. Items 5) Gathering and Boosting and 6) Gas Processing Plant are collectively referred to as "midstream" sources; emissions from midstream sources are typically classified as point sources. The classification of well-site emissions as nonpoint and midstream emissions as point sources is consistent with O&G emission inventory classifications used in the WRAP Phase III study<sup>3</sup>, West-wide Jumpstart Air Quality Modeling Study (WestJUMP AQMS)<sup>4</sup>, 2011 Western Air Quality Study<sup>5</sup>, and 2014 NEI methodology<sup>6</sup>.

<sup>&</sup>lt;sup>1</sup> https://www.wrapair2.org/pdf/11162017\_WRAPO&GWorkgroup\_RoadMapSOW.pdf


<sup>&</sup>lt;sup>2</sup> There are exceptions; for example, several wellsite sources in the Uinta Basin are available by facility and will be included in emission inventories as point source emissions.

<sup>&</sup>lt;sup>3</sup> <u>https://www.wrapair2.org/PhaseIII.aspx</u>

<sup>&</sup>lt;sup>4</sup> <u>https://www.wrapair2.org/WestJumpAQMS.aspx</u>

<sup>&</sup>lt;sup>5</sup> http://vibe.cira.colostate.edu/wiki/wiki/1018/3saqs-2011a-modeling-platform

<sup>&</sup>lt;sup>6</sup> https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-technical-support-document-tsd



**Figure 1-1.** Example Petroleum and Natural Gas Industry schematic<sup>7,8</sup>.

#### 1.1.2 Geographical Scope

The WESTAR-WRAP region includes 15 states, several of which have substantial O&G production and generate substantial O&G emissions. Figure 1-2 shows major basins in the WESTAR-WRAP region. California O&G emissions are estimated by the California Air Resources Board and are not included herein. Several states have limited or zero O&G production and O&G sector emissions: Arizona, Hawaii, Idaho, Nevada, Oregon, South Dakota, and Washington. Emissions were estimated by county, distinguishing between tribal and non-tribal sources.

<sup>&</sup>lt;sup>7</sup> Source: <u>https://www.epa.gov/ghgreporting/ghgrp-and-oil-and-gas-industry</u>

<sup>&</sup>lt;sup>8</sup> This figure shows O&G subsectors for which emissions have been developed in this study. It is important to consider that Petroleum and Natural Gas Industry equipment is typically tailored to meet field, basin, and/or region-specific infrastructure requirements.

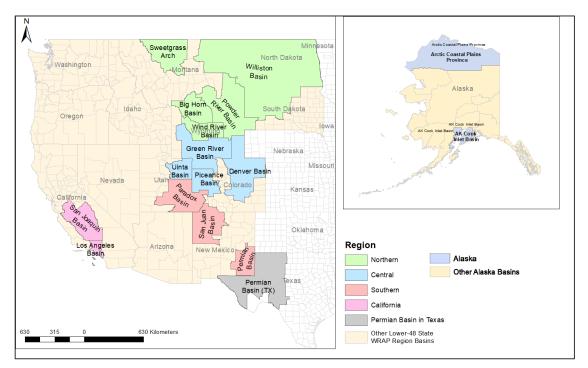



Figure 1-2. WESTAR-WRAP region, including major O&G basins.

#### 1.1.3 Temporal Scope

The baseline emission inventory was developed with annual emissions for the baseline period 2014-2016. Base year 2014 emission inventories that were the basis of the emission inventory compilation were updated, to the extent that data was made available, to include updated 2014-2016 emission inventory inputs provided by regulatory agencies and O&G operators. In general, midstream facility emissions are derived from state and federal agency data for calendar year 2014. Wellsite input factors were developed for activities in calendar year 2014, with updates to input factors as described in Section 2.2. All well count and production data used to develop the emission inventory were obtained from the IHS Enerdeq database for calendar year 2014.

#### 1.1.4 Pollutants

Emissions were estimated for the following pollutants;

- Nitrogen oxide (NOx)
- Volatile organic compounds (VOC)
- Carbon monoxide (CO)
- Particular matter less than 10 microns (PM<sub>10</sub>)
- Particulate matter less than 2.5 microns (PM<sub>2.5</sub>)
- Sulfur oxides (SOx)
- Carbon dioxide (CO<sub>2</sub>)
- Methane (CH<sub>4</sub>)
- Nitrous oxide (N<sub>2</sub>O)

#### 1.2 Well Count and Production Data

Oil and gas related activity data were obtained from the IHS Enerdeq database<sup>9</sup> queried via online interface. The IHS Enerdeq database uses data from each state's Oil and Gas Conservation Commission (OGCC or equivalent) as sources of information for oil and gas activity. This data is also available directly through database querying tools maintained by the respective agencies. It was determined that the IHS database is more accurate and complete than the state databases. The IHS database was also used to develop emission inventories in the WRAP Phase III, WestJump AQMS, and IWDW studies. Therefore, the IHS database was chosen as the basis for O&G activity statistics for this analysis. Two types of data were queried from the Enerdeq database: production data and well data. Production data includes information relevant to producing wells while well data includes information relevant to drilling activity ("spuds") and completions.

Production data were obtained for all counties in the WRAP region as IHS "298" format data files. The "298" well data contain information regarding historical O&G production. The "298" well data were processed with a PERL script to develop a database by American Petroleum Institute (API)-number, well type (oil, gas, or coalbed methane; CBM), spud type (directional, horizontal, or vertical), annual gas production, oil production, and water production with latitude and longitude information.

The API number in the IHS database consists of 14 digits as follows:

- Digits 1 to 2: state identifier
- Digits 3 to 5: county identifier
- Digits 6 to 10: borehole identifier
- Digits 11 to 12: sidetracks
- Digits 13 to 14: event sequence code (recompletions)

Based on the expectation that the first 10 digits, which include geographic and borehole identifiers, would predict unique sets of well head equipment, the unique wells were identified by the first 10 digits of the API number.

Well data were also obtained from the IHS Enerdeq database for all WRAP region states as IHS "297" well data. The "297" well data contain information on spuds and completions. The "297" well data were processed with a PERL script to arrive at a database of by-API-number and spud type, spud and completion dates with latitude and longitude information. Drilling events in 2014 were identified by indication that the spud occurred within 2014. If the well API number indicated the well was a recompletion, it was not counted as a drilling event, but if the API number indicated the well was a sidetrack, it was counted as a drilling event.

O&G activity for the WRAP Region states is summarized in Table 1-1; details by basin, spud type and well types are available in the 2014 O&G activity spreadsheet<sup>10</sup>.

<sup>9</sup> All data queried from IHS Enerdeq is subject to copyright protections

<sup>&</sup>lt;sup>10</sup> <u>https://www.wrapair2.org/pdf/WESTAR\_OG\_Activity\_10Aug2018\_distributed.xlsm</u>

| State | Spud<br>Count | Active<br>Well<br>Count | Gas<br>Production<br>(BCF/yr) | Condensate<br>and Oil<br>Production<br>(MMbbl/yr) |
|-------|---------------|-------------------------|-------------------------------|---------------------------------------------------|
| AK    | 115           | 2,079                   | 3,157                         | 168                                               |
| AZ    | 0             | 64                      | <1                            | <1                                                |
| CO    | 2,017         | 47,756                  | 1,642                         | 95                                                |
| ID    | 3             | 1                       | <1                            | 0                                                 |
| MT    | 174           | 10,515                  | 66                            | 30                                                |
| ND    | 2,623         | 12,706                  | 464                           | 395                                               |
| NM    | 1,358         | 51,140                  | 1,244                         | 125                                               |
| NV    | 2             | 73                      | <1                            | <1                                                |
| OR    | 0             | 16                      | 1                             | 0                                                 |
| SD    | 7             | 244                     | 15                            | 2                                                 |
| UT    | 839           | 13,021                  | 450                           | 41                                                |
| WA    | 0             | 0                       | 0                             | 0                                                 |
| WY    | 1,044         | 35,615                  | 1,998                         | 76                                                |
| Total | 8,182         | 173,230                 | 9,038                         | 932                                               |

#### Table 1-1. WESTAR-WRAP region 2014 O&G activity by state.

## **2.0 METHODOLOGY**

To develop the baseline 2014-2016 WESTAR-WRAP region emission inventory, first, base year 2014 emissions were compiled from existing emission inventory sources (described in Section 2.1). Subsequent to compilation of the base year 2014 emission inventory, outreach was conducted to gather additional data from regulatory agencies and upstream O&G operators to enhance the emissions inventory and, to the extent that data was provided, make the inventory applicable to the 2014-2016 baseline period (described in Section 2.2).

#### 2.1 2014 WRAP OGWG Baseline O&G Emission Inventory version 1

Ramboll compiled a WESTAR-WRAP region 2014 base year O&G emission inventory version 1 (also referred to herein as the WRAP OGWG v1 emission inventory)<sup>11</sup> from the following emission inventories:

- 2014 Greater San Juan and Permian Basin Emission Inventory (Grant et al., 2018a)
- 2014 Intermountain West O&G Basin Emission Inventory (Parikh et al., 2017)
- Uinta Basin 2014 Air Agencies Oil and Gas Emissions Inventory (Utah Division of Air Quality [UDAQ], 2017)
- Colorado Department of Health and Environment (CDPHE) Denver Basin Emission Inventory (CDPHE, 2018)
- US Environmental Protection Agency (EPA) 2014 NEI O&G Inventory, version 2 (EPA, 2018)<sup>12</sup>

O&G emissions on tribal land in the above studies included nonpoint emissions which were based on tribe specific emissions only if they were provided directly by a tribe (e.g., Southern Ute Indian Tribe in Grant et al. [2018a]); otherwise, tribal nonpoint emissions were typically estimated by apportioning county-level emissions to tribal and non-tribal land based on O&G activity. For inventories that did not fully distinguish tribal from non-tribal sources, tribal and non-tribal splits were added by allocating emissions according to the fraction of O&G activity surrogates on and off tribal land in each county. Point source emissions on tribal lands consist of Part 71 sources and other minor sources (e.g., sources reported under the Tribal Minor New Source Rule) to the extent that each inventory included those emission sources.

Table 2-1 shows data sources by basin used to compile the version 1 emission inventory.

| Basin            | State     | Reference                             |
|------------------|-----------|---------------------------------------|
| Greater San Juan | CO and NM | Grant et al. (2018a)                  |
| Permian          | NM        | Grant et al. (2018a)                  |
| Denver           | СО        | Parikh et al. (2017) and CDPHE (2018) |
| Uinta            | UT        | Parikh et al. (2017) and UDAQ (2017)  |
| Piceance         | СО        | Parikh et al. (2017)                  |
| Paradox          | СО        |                                       |

#### Table 2-1. Inventory data source by basin.

<sup>&</sup>lt;sup>11</sup> https://www.wrapair2.org/pdf/WESTAR\_OGWG\_Emissions\_Inventory\_2014\_Webdistribution\_081018.xlsx

<sup>&</sup>lt;sup>12</sup> To extract emissions from the NEI, nonpoint emissions were extracted for all source classification (SCC) codes beginning with "2310". For point sources, O&G emissions were extracted for North American Industry Classification System (NAICS) codes: 2111, 4862, 21111, 48611, 48621, 211111, 211112, 213111, 213112, 486110, 486210.

| Basin                      | State         | Reference  |
|----------------------------|---------------|------------|
| Raton                      | СО            |            |
| Big Horn                   | WY and MT     |            |
| Powder River               | WY and MT     |            |
| Green River                | WY            |            |
| Central Western Overthrust | WY            |            |
| Wind River                 | WY            |            |
| Williston                  | MT, ND and SD |            |
| Sweetgrass Arch            | МТ            |            |
| Central Montana Uplift     | МТ            |            |
| Other Basins               | All           | EPA (2018) |

Emission inventory data gaps were filled to ensure completeness, to the extent feasible according to the following:

- $PM_{2.5}$  emissions were not included in Grant et al. (2018a) and Parikh et al. (2017).  $PM_{2.5}$  emissions were assumed equivalent to  $PM_{10}$  emissions taken from these reference sources.
- GHG emissions were not available in Parikh et al. (2017). GHG emissions were
  estimated by multiplying criteria air pollutant emissions for a given source category by a
  source category specific GHG to criteria air pollutant emissions mass ratio. For venting,
  fugitive, and tank sources, basin and well type specific GHG to VOC mass ratios
  available from the EPA O&G Tool were used. AP-42 process specific emission factors
  from the Greater San Juan and Permian Basin Inventory Study were used to estimate
  GHG to NOx emission ratios for combustion sources.

#### 2.2 Survey Updates for 2014-2016 baseline inventory

As part of technical improvements to the WESTAR-WRAP O&G emission inventory, a survey data collection effort was used to collect new information to enhance emission inventory accuracy. Survey data collection targeted specific equipment types, production areas, and operators that could substantially enhance the WESTAR-WRAP O&G emission inventory. First, the survey was distributed to state agencies so that in-house agency data could be leveraged prior to asking O&G operators to provide survey data. After state agencies filled out the survey, it was distributed to O&G operators to fill remaining data gaps.

In this section survey results are applicable to baseline emission inventory updates are reported and integration into the baseline year inventory (also referred to herein as the WRAP OGWG v2 emission inventory) is described.

#### 2.2.1 Survey Content

Survey content was decided upon in collaboration with the WRAP OGWG and focused on gathering information on several key O&G emissions source categories. Two surveys were developed, one survey requesting a complete set of inputs for each source category, and a second survey focused only on emission controls practices and technology related inputs. Each

agency decided whether to distribute the survey to operators and if the operators would fill out the complete or controls-focused survey.

Table 2-2 shows the source categories and associated data requested in the survey. Several tabs in the survey request *representative* O&G equipment configuration and operation data. Survey respondents were instructed to provide *representative* data that, as accurately as feasible, reflects configuration(s) that represent a vast majority of activity in a given basin. The request for representative inputs is consistent with the estimation of upstream O&G emissions as nonpoint sources. Surveyed agencies and operators were also given the option to provide data files with individual configurations, in addition to, or in place of representative data. The O&G survey is available online: complete survey<sup>13</sup> and controls-focused survey<sup>14</sup>.

| Source<br>Category                 | Survey Data Fields                                                                                                                                                                                  |  |  |  |  |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Upstream Exploration               |                                                                                                                                                                                                     |  |  |  |  |  |
| Drill Rigs                         | Spud type, well type, representative engine configuration (number, hours per spud, horsepower), engine age distribution, fleet turnover frequency                                                   |  |  |  |  |  |
| Hydraulic<br>Fracturing<br>Engines | Spud type, well type, representative engine configuration (number, hours per spud, horsepower), engine age distribution, fleet turnover frequency                                                   |  |  |  |  |  |
|                                    | Upstream Production                                                                                                                                                                                 |  |  |  |  |  |
| Condensate<br>Tanks                | Spud type, VOC flashing emission rate, control type and prevalence, capture efficiency and basis, inspection type and frequency                                                                     |  |  |  |  |  |
| Oil Tanks                          | Spud type, VOC flashing emission rate, control type and prevalence, capture efficiency and basis, inspection type and frequency                                                                     |  |  |  |  |  |
| Wellhead<br>Engines                | Spud type, well type, number of engines per well by function (compressor, artificial lift, etc.), representative engine configuration (number, hours per spud, horsepower), engine age distribution |  |  |  |  |  |
|                                    | Gas Composition                                                                                                                                                                                     |  |  |  |  |  |
| Produced Gas                       | Extended gas composition by spud type and/or well type.                                                                                                                                             |  |  |  |  |  |
| Flash Gas<br>Composition           | Extended gas composition by spud type and/or well type                                                                                                                                              |  |  |  |  |  |

#### Table 2-2. Survey Content

#### 2.2.2 Survey Distribution and Collection

The survey was first provided to WRAP OGWG member state agencies. State agencies reviewed the survey and, if available, provided in-house agency data responses. State agencies determined whether they would distribute the survey to operators, and if so, whether to distribute the complete or controls-focused survey. Subsequently, the survey was distributed by agencies to select operators. Operators were responsible for contacting their drilling, hydraulic fracturing, etc. contractors to obtain relevant survey data.

<sup>&</sup>lt;sup>13</sup> <u>https://www.wrapair2.org/pdf/WRAP\_OGWG\_Survey\_SelectSrc\_08Jan2019.xlsx</u>

<sup>&</sup>lt;sup>14</sup> <u>https://www.wrapair2.org/pdf/WRAP\_OGWG\_Survey\_ControlsOnly\_08Jan2019.xlsx</u>

Survey distribution to operators, including supplemental outreach and operator activity data is described below.

- 1. Ramboll distributed the following materials to each WRAP OGWG state agency member:
  - a. Survey form
  - b. High priority operator list ranked by oil and gas (O&G) activity/ownership for each basin
  - c. Recommendations for survey collection and distribution
  - d. Survey cover letter template for agency survey distribution
- 2. Member state agency gathered survey data. Ramboll staff answered technical questions about the survey.
  - a. Each agency gathered survey data from internal agency sources and/or external sources such as O&G exploration and production companies.
  - b. If the agency chose to distribute the survey to O&G companies, the survey was distributed to the high priority operators chosen by the agency.
  - c. Each agency performed follow-up with operators the agency designated to fill out the survey to ensure that surveys were completed and submitted prior to the survey due date.

The type of survey distributed and the basins for which surveys were distributed is shown in Table 2-3.

|              | Distributing |                        |                  |
|--------------|--------------|------------------------|------------------|
| State        | Agency       | Basin                  | Survey Type      |
|              |              | Big Horn               | Complete         |
|              |              | Central Montana Uplift | Complete         |
| Montana      | MTDEQ        | Powder River           | Complete         |
|              |              | Sweetgrass Arch        | Complete         |
|              |              | Williston              | Complete         |
| New Mexico   | NMED         | Permian                | Complete         |
| New Mexico   | NIVIED       | San Juan               | Complete         |
| North Dakota | NDDOH        | Williston              | Complete         |
|              |              | Denver                 | Controls-focused |
| Wyoming      | WYDEQ        | Green River            | Controls-focused |
|              |              | Powder River           | Controls-focused |

#### Table 2-3.Operator survey distribution

#### 2.2.3 Survey Collection

Several agencies provided data for specific O&G basins in response to the survey as indicated below.

- **Alaska** (Arctic Coastal Plains Province and Cook Inlet Basin): Baseline emission inventory updates.
- **Colorado** (Denver Basin): 2017 emission inventory. Applicable to future year emission inventory controls.

- **Montana** (Central Montana Uplift, Sweetgrass Arch, and Williston Basin): Gas compositions.
- **Wyoming** (Denver Basin, Green River Basin, and Powder River Basin): 2014 and 2017 detailed operator submissions to be used in the estimation of future year control factors. *Applicable to future year emission inventory controls.*
- **Utah** (Uinta Basin): Engine age distributions to be used in the estimation of future year control factors. *Applicable to future year emission inventory controls*

A total of 42 operators surveys were collected, with the largest number of surveys (17) collected in the Williston Basin in North Dakota (see Table 2-4). Operator survey results are documented below.

|                      |                           | No. of   | Percent of 2014 Basin-wide Activity<br>Represented by Returned Surveys |            |            |  |  |
|----------------------|---------------------------|----------|------------------------------------------------------------------------|------------|------------|--|--|
|                      |                           | Returned | Well                                                                   | Oil        | Gas        |  |  |
| State                | Basin                     | Surveys  | Count                                                                  | Production | Production |  |  |
|                      | Big Horn                  | 1        | 5%                                                                     | 0%         | 6%         |  |  |
|                      | Central Montana<br>Uplift | 2        | 62%                                                                    | 5%         | 85%        |  |  |
| Montana              | Powder River              | 1        | 23%                                                                    | 91%        | 90%        |  |  |
|                      | Sweetgrass<br>Arch        | 2        | 23%                                                                    | 19%        | 53%        |  |  |
|                      | Williston                 | 6        | 25%                                                                    | 64%        | 31%        |  |  |
| New                  | Permian                   | 4        | 66%                                                                    | 80%        | 86%        |  |  |
| Mexico               | San Juan                  | 0        | -                                                                      | -          | -          |  |  |
| North<br>Dakota      | Williston                 | 17       | 11%                                                                    | 25%        | 26%        |  |  |
|                      | Denver                    | 1        | 18%                                                                    | 46%        | 52%        |  |  |
| Wyoming <sup>a</sup> | Green River               | 4        | 46%                                                                    | 51%        | 53%        |  |  |
|                      | Powder River              | 4        | 4%                                                                     | 34%        | 13%        |  |  |

#### Table 2-4.Returned operator surveys.

<sup>a</sup> Control-focused survey, not applicable to baseline emission inventory improvements.

#### 2.2.4 Operator Survey-Based Emission Inventory Updates

In this section operator survey results applicable to baseline emission inventory updates are reported and integration into the baseline year inventory is described. Table 2-5 shows, by basin, the categories for which operators submitted survey data. Emission inventory updates based on operator survey data are limited to the basins and source categories listed in Table 2-5.

| Source Category      | Big<br>Horn<br>Basin<br>MT | Central<br>Montana<br>Uplift<br>MT | Sweetgrass<br>Arch<br>MT | Powder<br>River<br>Basin<br>MT | Permian<br>Basin<br>NM | Willisto<br>MT | n Basin<br>ND |
|----------------------|----------------------------|------------------------------------|--------------------------|--------------------------------|------------------------|----------------|---------------|
| Drilling             | -                          | -                                  | -                        | -                              | ×                      | ×              | ×             |
| Hydraulic Fracturing | -                          | -                                  | -                        | -                              | ×                      | ×              | ×             |
| Tanks                | ×                          | ×                                  | ×                        | ×                              | ×                      | ×              | ×             |
| Wellhead Engines     | ×                          | ×                                  | ×                        | ×                              | ×                      | ×              | ×             |
| Gas Compositions     | ×                          | ×                                  | ×                        | ×                              | ×                      | ×              | ×             |

Table 2-5.Categories for which survey data applicable to baseline inventory updateswas submitted.

For basins in which survey-based operator data was available for only one operator, if the operator represented greater than 10% of the O&G activity metric associated with a given source category, representative input factors were developed by assuming that the remaining O&G activity in the basin would have input factors equivalent to those used in the development of the WRAP OGWG v1 emission inventory. If the operator represented less than 10% of the O&G activity metric, a representative factor was not developed to preserve the confidentiality of a single operator's data.

#### 2.2.4.1 Drill Rigs

Updated drill rig inputs were developed for the Permian Basin, Williston Basin in Montana, and Williston Basin in North Dakota (see Table A1). Rig activity per spud, estimated as total horsepower-hours (i.e., the product of number of engines, rated horsepower per engine, and hours per spud) decreased for each basin by 20%-53% relative to current inventory estimates. Permian Basin drill rigs were comprised of a substantial fraction of Tier 4 engines and Williston Basin drill rigs were comprised almost exclusively of Tier 2 engines. For operators that indicated use of Tier 4 engines, those engines were described as "generators". Therefore, Tier 4 drill rig engines were assumed to meet stringent generator-set emission standards. The baseline emission inventory was updated to be based on the drill rig configuration inputs in Table A1 for the indicated basins.

Table 2-6 shows the basis of drill rig emissions for basins in which survey-based input factors were developed. Survey-based emission rates per spud were developed based on survey-based factors in Table A1 and multiplied by the number of horizontal spuds in each county in applicable basins to estimate emissions. These emissions replaced estimates of drill rig emissions from horizontal spuds in the WRAP OGWG v1 emission inventory. County-level emissions were apportioned to non-tribal and tribal land according the fraction of spuds in each county on non-tribal and tribal land.

| Basin          | Horizo                  | ontal <sup>b</sup>   | Vertical |        |  |
|----------------|-------------------------|----------------------|----------|--------|--|
| DdSIII         | Non-tribal              | -tribal Tribal Non-t |          | Tribal |  |
| Permian        | Survey-based<br>factors | а                    | OGWG v1  | a      |  |
| Williston (MT) | Survey-ba               | Survey-based factors |          | 'G v1  |  |
| Williston (ND) | Survey-ba               | Survey-based factors |          | 'G v1  |  |

<sup>a</sup> not applicable, no tribal activity

<sup>b</sup> horizontal input factors were applied to directional wells

#### 2.2.4.2 Hydraulic Fracturing Engines

Updated hydraulic fracturing engine inputs were developed for the Permian Basin and Williston Basin in North Dakota (see Table A2). Fracturing engine activity per spud, estimated as total horsepower-hours (i.e., the product of number of engines, rated horsepower per engine, and hours per spud) increased substantially compared to current inventory estimates; Permian Basin total horsepower-hours increased by approximately 8 times and Williston Basin increased by approximately 27 times. Horsepower-hour increases are being driven by more intensive hydraulic fracturing activities at horizontal wells than assumed for previous inventories. Emission rates also changed substantially from previous estimates, with substantial use of Tier 4 engines in both the Williston and Basin Permian Basin and use of both natural gas turbine and electrified engine configurations in addition to diesel engine configurations in the Permian Basin. Based on input from several operators, hydraulic fracturing pump arrays that use Tier 4 diesel engines are configured to use generator-sets. Therefore, Tier 4 engines in hydraulic fracturing pump arrays were assumed to meet stringent Tier 4 generator-set standards. Other, less prevalent engines with smaller rated-power per engine such as light plants or blenders were assumed to meet Tier 4 interim standards.

Table 2-7 shows the basis of hydraulic fracturing engine emissions for basins in which surveybased input factors were developed. Survey-based emission rates per fracturing event were developed based on survey-based factors in Table A2 and multiplied by the number of horizontal spuds in each county in applicable basins to estimate emissions; one hydraulic fracturing event was assumed per spud. These emissions replaced estimates of hydraulic fracturing engine emissions from horizontal wells in the WRAP OGWG v1 emission inventory. County-level emissions were apportioned to non-tribal and tribal land according the fraction of spuds in each county on non-tribal and tribal land.

| Decin               | Horizontal <sup>b</sup> |   | Vert       | ical   |
|---------------------|-------------------------|---|------------|--------|
| Basin               | Non-tribal Trib         |   | Non-tribal | Tribal |
| Permian             | Survey-based<br>factors | а | OGWG v1    | а      |
| Williston (ND & MT) | Survey-based factors    |   | OGW        | G v1   |

## Table 2-7.Emission inventory basis for basins with hydraulic fracturing enginesurvey data.

<sup>a</sup> not applicable, no tribal activity

<sup>b</sup> horizontal input factors were applied to directional wells

#### 2.2.4.3 Tanks

#### <u>Oil Tanks</u>

Updated oil tank inputs were developed for several O&G basins (see Table A3). There are substantial differences in oil tank input factors compared to input factors in the current inventory. For example, the fraction of uncontrolled tanks changed from 73% to 19% for the Permian Basin, from 14% to 1% for the Powder River Basin, from 17% to < 1% for horizontal and vertical wells in the Williston Basin. Decreases in the prevalence of uncontrolled tanks indicates that a higher fraction of tanks are being controlled to comply with regulations such as EPA New Source Performance Standard (NSPS) Subpart OOOO. Uncontrolled VOC flash emission factors decreased for several basins. For example, uncontrolled VOC flash emission factors decreased by 16% and 61% for oil tanks in the Williston Basin, in Montana and North Dakota, respectively. Flash emission factor decreases may result from factors such as better sampling and/or the use of more site specific information in E&P Tank model runs and/or process simulation software in the submitted surveys compared to previously compiled emission inventory inputs.

Table 2-8 shows the basis of oil tank emissions for basins in which survey-based input factors were developed. Survey-based emission rates per barrel of oil produced were developed based on survey-based factors in Table A3 and multiplied by the amount oil production from horizontal or vertical wells in each county in applicable basins to estimate emissions. These emissions replaced estimates of oil tank emissions from horizontal wells and vertical wells in the WRAP OGWG v1 emission inventory. County-level emissions were apportioned to non-tribal and tribal land according the fraction of oil production in each county from wells on non-tribal and tribal land.

| Basin                     | Horizo                       | ontal <sup>b</sup> | Vertical   |             |  |
|---------------------------|------------------------------|--------------------|------------|-------------|--|
| DdSIII                    | Non-tribal                   | Tribal             | Non-tribal | Tribal      |  |
| Central Montana<br>Uplift | OGWG v1                      |                    | Survey-bas | sed factors |  |
| Permian                   | Survey-based<br>factors      | а                  | OGWG v1    | a           |  |
| Powder River (MT)         | OGW                          | G v1               | Survey-bas | sed factors |  |
| Sweetgrass Arch           | OGWG v1 Survey-based factors |                    |            | sed factors |  |
| Williston (MT)            | Survey-based factors         |                    |            |             |  |
| Williston (ND)            | Survey-based factors         |                    |            |             |  |

#### Table 2-8. Emission inventory basis for basins with oil tank survey data.

<sup>a</sup> not applicable, no tribal activity

<sup>b</sup> horizontal input factors were applied to directional wells

#### Condensate Tanks

Updated condensate tank inputs were developed for the Sweetgrass Arch and Williston Basin in North Dakota and Montana (see Table A4). The fraction of uncontrolled tanks increased from 31% to 100% in the Sweetgrass Arch Basin and decreased from 8% to 4% and 8% to 1% in the Williston Basin, in Montana and North Dakota, respectively.

Table 2-9 shows the basis of condensate tank emissions for basins in which survey-based input factors were developed. Survey-based emission rates per barrel of condensate produced were developed based on survey-based factors in Table A4 and multiplied by the amount oil production from horizontal or vertical wells in each county in applicable basins to estimate emissions. These emissions replaced estimates of condensate tank emissions from horizontal wells and vertical wells in the WRAP OGWG v1 emission inventory. County-level emissions were apportioned to non-tribal and tribal land according the fraction of condensate production in each county from wells on non-tribal and tribal land.

#### Table 2-9. Emission inventory basis for basins with condensate tank survey data.

| Decin           | Horizontal <sup>b</sup>      |        | Ver                  | tical  |  |
|-----------------|------------------------------|--------|----------------------|--------|--|
| Basin           | Non-tribal                   | Tribal | Non-tribal           | Tribal |  |
| Sweetgrass Arch | OGWG v1                      |        | Survey-based factors |        |  |
| Williston (MT)  | Survey-based factors         |        | OGWG v1              |        |  |
| Williston (ND)  | Survey-based factors OGWG v1 |        | G v1                 |        |  |

<sup>a</sup> not applicable, no tribal activity

<sup>b</sup> horizontal input factors were applied to directional wells

#### Capture Efficiency

For tanks with emission controls, capture efficiency represents the percent of uncontrolled emissions that are controlled by the control device. Open thief hatches result in uncontrolled fugitive tank emissions. Across all returned operator surveys, 20 condensate tank configurations and 51 oil tank configurations were submitted. 75% of condensate tank configuration and 57% of oil tank configuration responses included a response to the thief hatch status (summarized in Table 2-10). The overall average percent of thief hatches open was 2.8% for condensate tanks and 3.0% for oil tanks.

| Operator Response              | Survey Field:<br>Percentage of Tanks<br>Observed with Thief<br>Hatches Open<br>Number of Responses | Average Percentage<br>of Tanks Observed<br>with Thief Hatches<br>Open |
|--------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                | Condensate Tanks                                                                                   |                                                                       |
| No Response / Not<br>available | 5                                                                                                  |                                                                       |
| Zero                           | 7                                                                                                  | 2.8%                                                                  |
| Minimal                        | 3                                                                                                  |                                                                       |
| Non-zero Value                 | 5                                                                                                  |                                                                       |
|                                | Oil Tanks                                                                                          |                                                                       |
| No Response / Not tracked      | 29                                                                                                 |                                                                       |
| Zero                           | 9                                                                                                  | 3.0%                                                                  |
| Minimal                        | 1                                                                                                  | 5.0%                                                                  |
| Non-zero Value                 | 12                                                                                                 |                                                                       |

#### Table 2-10. Open thief hatch survey response summary.

Assuming that a tank with an open thief hatch emits VOCs at the uncontrolled tank VOC emission rate, a capture efficiency of 97% (i.e., 3% of tank emissions are not routed to the flare) would result in emissions that are 2.5 times higher for a 98% efficient control device and 1.6 times higher for 95% efficient control device (see Figure 2-1).

More study is needed to (1) develop robust capture efficiency estimates and (2) estimate VOC emission magnitude when a thief hatch is open; the increases in emissions estimated in Figure 2-1 are screening level estimates.

At this time, sufficient information is not available to extrapolate the average capture efficiency shown in Table 2-10 across the WESTAR-WRAP region. Variation in capture efficiency by production type and geography is not available. Therefore, capture efficiency is assumed to be 100%, consistent with previous inventories.

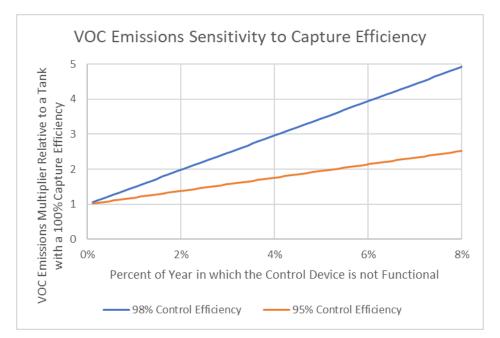



Figure 2-1. Tank VOC emissions sensitivity to capture efficiency.

#### 2.2.4.4 Wellhead Engines

Updated wellhead configurations were developed for the basin and engine types listed below and are included in Table A5.

- Sweetgrass Arch Wellhead Compressors Engines: WRAP OGWG v1 input factors indicated zero activity from this source category. Operator submitted survey data indicated substantial use of wellhead compressors in this basin.
- **Bighorn Basin Lateral Compressor Engines:** Survey-based input factors are similar to WRAP OGWG v1 input factors.
- **Central Montana Uplift Lateral Compressor Engines:** Survey-based input factors include lower annual activity and higher prevalence compared to WRAP OGWG v1 input factors.

- Williston Basin Artificial Lift Engines: Survey-based input factors were developed by horizontal and vertical spud types for Montana and North Dakota. For each spud type and state, the survey-based input factors showed substantially higher electrification compared to the WRAP OGWG v1 input factors.
- **Permian Basin Artificial Lift Engines:** Survey-based input factors were developed by horizontal spud type for New Mexico. Survey-based input factors showed lower prevalence and electrification and higher average engine rated-power compared to the WRAP OGWG v1 input factors.
- Williston Basin Generators: Survey-based input factors were developed for generators operating at horizontal oil wells. Wellhead generators were not included in the WRAP OGWG v1 emission inventory. 11% of horizontal oil wells are estimated to have a generator.

Table 2-11 shows the basis of wellhead engine emissions for basins in which survey-based input factors were developed. Survey-based emission rates per active well were developed based on survey-based factors in Table A5 and multiplied by the number of active horizontal oil, horizontal gas, vertical oil, or vertical gas wells in each county in applicable basins to estimate emissions. These emissions replaced estimates of wellhead engine emissions in the WRAP OGWG v1 emission inventory. County-level emissions were apportioned to non-tribal and tribal land according the fraction of active wells in each county from wells on non-tribal and tribal land.

|                                 | Engine                  |           | Horizontal <sup>b</sup> |         | Ver                     | tical          |
|---------------------------------|-------------------------|-----------|-------------------------|---------|-------------------------|----------------|
| Basin                           | Туре                    | Well Type | Non-<br>tribal          | Tribal  | Non-<br>tribal          | Tribal         |
| Sweetgrass<br>Arch              | Wellhead<br>Compressors | Gas       | OGWG v1                 |         | Survey-based<br>factors |                |
| Bighorn<br>Basin                | Lateral<br>Compressor   | Gas       | OGW                     | OGWG v1 |                         | -based<br>tors |
| Central<br>Montana<br>Uplift    | Lateral<br>Compressor   | Gas       | OGWG v1                 |         | Survey-based<br>factors |                |
| Williston<br>Basin<br>(ND & MT) | Artificial Lift         | Oil       | Survey-based factors    |         | 5                       |                |
| Permian<br>Basin                | Artificial Lift         | Oil       | Survey-based<br>factors |         | OGW                     | 'G v1          |
| Williston<br>Basin<br>(ND & MT) | Generators              | Oil       | Survey-based<br>factors |         |                         | c              |

#### Table 2-11. Emission inventory basis for basins with wellhead engine survey data.

<sup>a</sup> not applicable, no tribal activity

<sup>b</sup> horizontal input factors were applied to directional wells

<sup>c</sup> not applicable, generator engine inputs are not available for vertical wells in the survey or WRAP OGWG v1. No emissions are estimated for this engine type at vertical wells.

#### 2.2.4.5 Emission Changes Resulting from Integration of Operator Survey Data

NOx emissions increased by 8% over the WESTAR-WRAP region based on integration of operator survey data into the inventory (see Table 2-12). Hydraulic fracturing engine emissions accounted for 47% of NOx emission increases. Operator surveys indicated the use of pump engine arrays with more engines and more operational hours than previous inventories. Emissions from artificial lift engines accounted for 38% of NOx emissions increases. Operator surveys indicated the use of artificial life engines with higher rated power than assumed in previous inventories. Emissions from drill rig emissions accounted for close to 100% of NOx emission decreases as a result of lower overall combined activity in horsepower-hours relative to previous inventories.

| Basin                       | Source Category              | NOx (tpy) |
|-----------------------------|------------------------------|-----------|
| Williston , ND              | Hydraulic Fracturing Engines | 18,369    |
| Williston , ND              | Artificial Lift Engines      | 11,894    |
| Williston , ND              | Generator Engines            | 2,848     |
| Permian , NM                | Artificial Lift Engines      | 2,800     |
| Sweetgrass , MT             | Nonpoint Compressor Engines  | 1,789     |
| Williston , MT              | Artificial Lift Engines      | 1,404     |
| Williston , ND              | Oil Tanks                    | 823       |
| Williston , MT              | Hydraulic Fracturing Engines | 743       |
| Permian , NM                | Hydraulic Fracturing Engines | 742       |
| Williston , MT              | Generator Engines            | 437       |
| Central Montana Uplift , MT | Nonpoint Compressor Engines  | 226       |
| Permian , NM                | Oil Tank Flaring             | 54        |
| Williston , ND              | Condensate Tanks             | 17        |
| Big Horn , MT               | Nonpoint Compressor Engines  | 9         |
| Williston , MT              | Condensate Tanks             | 1         |
| Williston , ND              | Drill Rigs                   | 15,610    |
| Williston , MT              | Drill Rigs                   | -1,258    |
| Permian , NM                | Drill Rigs                   | -943      |
| Williston , MT              | Oil Tanks                    | -18       |
| Powder River , MT           | Oil Tanks                    | -1        |
| Sweetgrass , MT             | Oil Tanks                    | 0         |
| Central Montana Uplift , MT | Oil Tanks                    | 0         |
| Sweetgrass , MT             | Condensate Tanks             | 0         |
| Tot                         | 24,325                       |           |
| Perce                       | 8%                           |           |

## Table 2-12. NOx Emission Changes Resulting from Integration of Operator SurveyData.

VOC emissions decreased by 22% over the WESTAR-WRAP region based on integration of operator survey data into the inventory (see Table 2-13). VOC emission increases were small compared to VOC emission decreases. Emissions from oil tanks accounted for close to 100% of VOC emission decreases as a results of higher emission control prevalence.

| Basin                      | Source Category              | VOC (tpy) |
|----------------------------|------------------------------|-----------|
| Permian , NM               | Artificial Lift Engines      | 2,224     |
| Williston , ND             | Hydraulic Fracturing Engines | 1,450     |
| Williston , ND             | Artificial Lift Engines      | 957       |
| Sweetgrass, MT             | Oil Tanks                    | 535       |
| Williston , ND             | Condensate Tanks             | 485       |
| Williston , ND             | Generator Engines            | 417       |
| Permian , NM               | Drill Rigs                   | 325       |
| Permian , NM               | Hydraulic Fracturing Engines | 175       |
| Williston , MT             | Artificial Lift Engines      | 139       |
| Central Montana Uplift, MT | Oil Tanks                    | 104       |
| Williston , MT             | Generator Engines            | 64        |
| Williston , MT             | Hydraulic Fracturing Engines | 58        |
| Sweetgrass, MT             | Nonpoint Compressor Engines  | 33        |
| Sweetgrass, MT             | Condensate Tanks             | 32        |
| Williston , MT             | Condensate Tanks             | 20        |
| Powder River , MT          | Oil Tanks                    | 5         |
| Big Horn , MT              | Nonpoint Compressor Engines  | 0         |
| Williston , ND             | Oil Tanks                    | -282,784  |
| Permian , NM               | Oil Tank                     | -28,62    |
| Williston , MT             | Oil Tanks                    | -16,190   |
| Williston , ND             | Drill Rigs                   | -1,033    |
| Williston , MT             | Drill Rigs                   | -81       |
| Central Montana Uplift, MT | Nonpoint Compressor Engines  | -2        |
| Tota                       | -321,690                     |           |
| Perce                      | -22%                         |           |

Table 2-13. VOC Emission Changes Resulting from Integration of Operator SurveyData.

#### 2.2.5 Agency Survey-Based Emission Inventory Updates

The 2014 NEI v2 was the sole basis of Alaska O&G emissions in the WRAP OGWG v1 emission inventory. Alaska Department of Environmental Conservation (ADEC) noted that emissions from several facilities emitting below Title V thresholds were not included in the 2014 NEI v2. ADEC provided emissions for these sources (see Table 2-14) were added to the WRAP OGWG v2 emission inventory.

|                                                                      | Emissions (tons/year) |     |     |                 |                         |                   |
|----------------------------------------------------------------------|-----------------------|-----|-----|-----------------|-------------------------|-------------------|
| Facility                                                             | NOx                   | VOC | СО  | SO <sub>2</sub> | <b>PM</b> <sub>10</sub> | PM <sub>2.5</sub> |
| Greater Prudhoe Bay Skid 50<br>Pad Transfer Station                  | 39                    | а   | а   | 39              | а                       | а                 |
| Peak Base Shop, Peak<br>Wellex, and Nabors Base<br>Camp Facilities   | 56                    | 18  | 44  | 5.3             | 11                      | a                 |
| Milne Point S Pad (CHOPS)                                            | 37                    | <1  | 14  | 11              | <1                      | а                 |
| Alpine Satellite Drill Pad CD5                                       | 93                    | 88  | 60  | 23              | 5                       | а                 |
| Arctic Wolf Camp                                                     | 39                    | а   | а   | а               | а                       | а                 |
| 24 Man Skid Camp                                                     | 41                    | а   | а   | а               | а                       | а                 |
| Mustang Oil Field<br>Development                                     | 186                   | 110 | 216 | 9               | 7                       | 7                 |
| Paxton Production Facility                                           | 57                    | 29  | 50  | <1              | 1                       | 1                 |
| Gudenrath Compressor<br>Station                                      | 76                    | <1  | 26  | 1               | 2                       | 2                 |
| Baker Platform                                                       | 88                    | 10  | 28  | 11              | 6                       | а                 |
| NNA Grind and Inject<br>Operation                                    | 86                    | а   | a   | a               | a                       | а                 |
| Kenai Gas Field Pad 41-18                                            | 42                    | а   | 44  | 53              | а                       | а                 |
| Cook Inlet Exploratory<br>Drilling Program- Bluecrest /<br>Buccaneer | 17                    | 8   | 49  | 5               | 4                       | а                 |
| Cosmopolitan Project -<br>Bluecrest                                  | 64                    | 62  | 94  | 35              | 12                      | а                 |
| Cosmopolitan Project -<br>Buccaneer                                  | 21                    | 25  | 59  | 12              | 4                       | а                 |

#### Table 2-14. Alaska O&G emissions from small nonpoint sources.

<sup>a</sup> Emissions not included in reference dataset and were set to zero in WRAP OGWG v2 inventory

## **3.0 SUMMARY RESULTS**

O&G emissions results for the baseline 2014-2016 WRAP OGWG v2 emission inventory for the WESTAR-WRAP region are presented below as a series of tables and charts. Additional summaries and fully detailed emission inventory data are available in spreadsheets that accompany this report which are posted on the WRAP OGWG website (https://www.wrapair2.org/OGWG.aspx).

#### 3.1 2014-2016 WRAP OGWG v2 emission inventory

2014-2016 WRAP OGWG v2 NOx and VOC emissions for all WRAP region basins are summarized in Table 3-1 and Table 3-2 respectively. Across the WESTAR-WRAP region, most nonpoint O&G emissions are emitted from wellsite sources and point O&G emission are emitted from midstream sources. Approximately 58% of 2014 NOx emissions and over 85% of 2014 VOC emissions were from nonpoint sources. Basin specific nonpoint and point source contributions result from basin specific equipment and operational characteristics and infrastructure, and in some cases basin specific accounting. For example, the Uinta Basin includes several wellsite source categories in the point source emission inventory. The top-seven emitting bases account for approximately 75% of NOx emissions and the top-five basin and state combinations account for over 80% of VOC emissions.

|                                    | NOx Emissions (tons/yr) |         |         |  |  |
|------------------------------------|-------------------------|---------|---------|--|--|
| Basin and State                    | Nonpoint                | Point   | Total   |  |  |
| Williston, ND                      | 55,003                  | 2,703   | 57,706  |  |  |
| San Juan, NM                       | 33,436                  | 11,294  | 44,730  |  |  |
| Arctic Coastal Plains Province, AK | 1,384                   | 34,348  | 35,732  |  |  |
| Permian, NM                        | 14,442                  | 18,561  | 33,004  |  |  |
| Powder River, WY                   | 24,508                  | 5,017   | 29,525  |  |  |
| Denver, CO                         | 16,750                  | 8,155   | 24,905  |  |  |
| Piceance, CO                       | 5,824                   | 9,571   | 15,395  |  |  |
| San Juan, CO                       | 11,842                  | 3,417   | 15,259  |  |  |
| Uinta, UT                          | 886                     | 14,161  | 15,047  |  |  |
| Green River, WY                    | 5,430                   | 5,408   | 10,838  |  |  |
| Raton, CO                          | 79                      | 6,881   | 6,959   |  |  |
| AK Cook Inlet Basin, AK            | 1,853                   | 4,664   | 6,517   |  |  |
| Williston, MT                      | 4,930                   | 482     | 5,412   |  |  |
| Big Horn, WY                       | 972                     | 1,501   | 2,473   |  |  |
| Sweetgrass Arch, MT                | 2,128                   | 313     | 2,441   |  |  |
| Denver Basin noCO, WY              | 1,733                   | 33      | 1,766   |  |  |
| Las Animas Arch, CO                | 420                     | 1,252   | 1,671   |  |  |
| Wind River, WY                     | 235                     | 1,334   | 1,569   |  |  |
| Plateau Sedimentary Prov, AZ       | -                       | 1,468   | 1,468   |  |  |
| Paradox, UT                        | 923                     | 300     | 1,123   |  |  |
| Other WRAP Basins                  | 1,218                   | 7,474   | 8,692   |  |  |
| Total                              | 183,995                 | 138,337 | 322,333 |  |  |

#### Table 3-1. Summary of nonpoint and point NOx emissions (tons/yr) by basin.

|                                    | VOC Emissions (tons/yr) |                         |                            |
|------------------------------------|-------------------------|-------------------------|----------------------------|
| Basin and State                    | Nonpoint                | Point                   | Total                      |
| Williston, ND                      | 196,696                 | 962                     | 197,658                    |
| Powder River, WY                   | 172,453                 | 4,658                   | 177,112                    |
| Denver, CO                         | 159,112                 | 6,704                   | 165,817                    |
| Permian, NM                        | 86,633                  | 11,164                  | 97,796                     |
| Uinta, UT                          | 9,212                   | 85,077                  | 94,290                     |
| San Juan, NM                       | 79,743                  | 6,824                   | 86,567                     |
| Green River, WY                    | 62,626                  | 11,306                  | 73,932                     |
| Williston, MT                      | 26,977                  | 705                     | 27,682                     |
| Arctic Coastal Plains Province, AK | 20,977                  | 672                     | 21,949                     |
| Paradox, UT                        | 17,422                  | 48                      | 17,471                     |
| Piceance, CO                       | 3,114                   | 11,620                  | 14,734                     |
| Wind River, WY                     | 6,601                   | 1,424                   | 8,025                      |
| Sweetgrass Arch, MT                | 5,277                   | 1,424                   | 5,380                      |
| AK Cook Inlet Basin, AK            | 4,712                   | 650                     | 5,362                      |
| Big Horn, WY                       | 3,523                   | 513                     | 4,036                      |
|                                    |                         |                         |                            |
| San Juan, CO<br>Other WRAP Basins  | 2,176<br>9,763          | 1,701                   | 3,877                      |
| Total                              | 9,763<br>867,318        | 4,659<br><b>148,791</b> | 14,421<br><b>1,016,110</b> |

#### Table 3-2. Summary of nonpoint and point VOC emissions (tons/yr) by Basin.

Figure 3-1 and Figure 3-2 show NOx and VOC nonpoint emissions contributions, respectively, for basin and state combinations with the largest nonpoint emission contributions.

The largest source of nonpoint NOx emissions are hydraulic fracturing engines, wellhead engines, process heaters, and drill rigs. Wellhead engines (including artificial lift engines, wellhead and lateral compressor engines, generators and other miscellaneous engines) are the largest contributor to nonpoint NOx emissions in the San Juan Basin (NM; 90%), San Juan Basin (CO; 95%), and Permian Basin (NM; 52%). Hydraulic fracturing engines are the largest contributor to NOx emissions for the Williston Basin (ND; 43%) and Powder River Basin (WY; 81%). Drill rigs are the largest contributor to NOx emissions for the Denver Basin (CO; 32%) and Piceance Basin (CO; 40%).

The largest nonpoint VOC emissions sources vary by basin. In the Williston Basin (ND), casinghead gas accounts for 50% of VOC emissions. In the Powder River Basin (WY), hydraulic fracturing and completion activities account for 91% of VOC emissions. In the Denver Basin (CO), condensate tanks account for 76% of VOC emissions. In the Permian Basin (NM), oil tanks account for 45% of VOC emissions. In the San Juan Basin (NM), pneumatic devices account for 32% of VOC emissions.

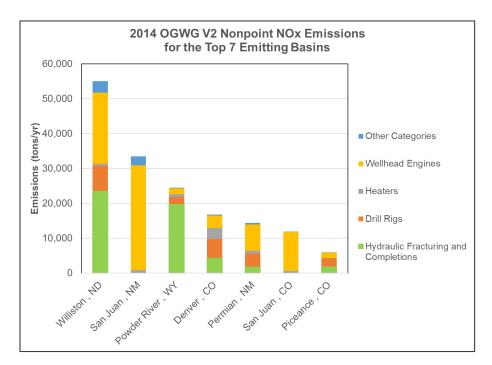
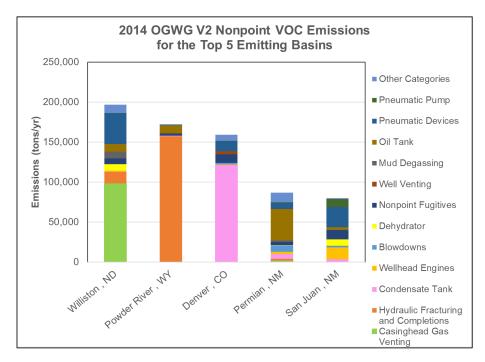




Figure 3-1. 2014 OGWG V2 nonpoint NOx emissions (tons/yr) contribution by source category for top 7 highest emitting basins.



**Figure 3-2. 2014 OGWG V2** nonpoint VOC emissions (tons/yr) contribution by source category for top 5 highest emitting basins.

#### 3.1.1 2014-2016 Baseline Comparison to 2014 Emission Inventories

Changes from the 2014 NEI v2 to the 2014 base year WRAP OGWG v1 to the 2014-2016 baseline WRAP OGWG v2 are shown below for NOx (Figure 3-3) and VOC (Figure 3-4).

Changes from 2014 NEI v2 to the WRAP OGWG v1 inventory are based on state supplied emission inventory updates (e.g., Colorado condensate tanks and Uinta Basin 2014 Air Agencies Oil and Gas Emissions Inventory); differences between NEI v2 emissions and the 2014 IWDW emission inventory that was the basis of WRAP OGWG v1 emission inventory for several states (e.g., Wyoming, Colorado); and for the Greater San Juan (Colorado and New Mexico) and Permian Basin (New Mexico), differences between Grant et al. (2018a) and the EPA NEI v2. WESTAR-WRAP region-wide emission increased by 16% for NOx and 14% for VOC from 2014 NEI v2 to 2014 base year WRAP OGWG v2.

Changes from the WRAP OGWG v1 to the WRAP OGWG v2 emission inventory are based on updates per agency and operator survey responses. WESTAR-WRAP region-wide NOx emissions increased by 9% and VOC decreased by 22%. NOx emission increases for North Dakota, Montana, and New Mexico resulting from survey-based updates were the primary cause of WESTAR-WRAP region-wide NOx emission increases. VOC emission decreases for North Dakota, Montana, and New Mexico resulting from survey-based updates were the primary cause of WESTAR-WRAP region-wide NOx emission increases. VOC emission decreases for North Dakota, Montana, and New Mexico resulting from survey-based updates were the primary cause of WESTAR-WRAP region-wide VOC emission decreases.

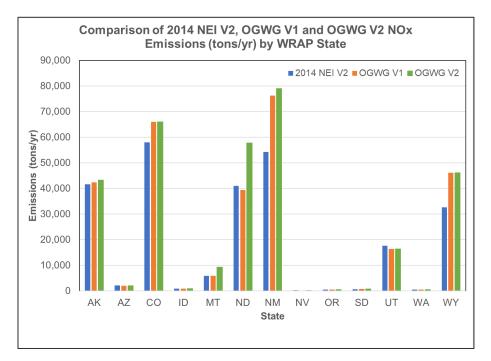



Figure 3-3. Comparison of 2014 NEI, OGWG V1 and OGWG V2 NOx emissions by WRAP region State.

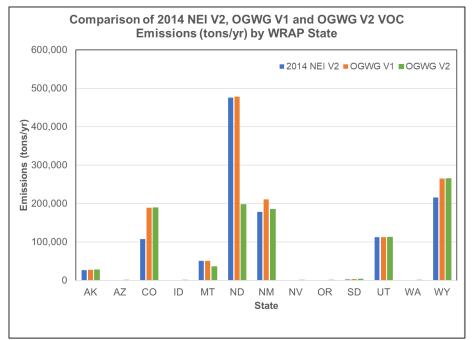



Figure 3-4. Comparison of 2014 NEI, OGWG V1 and OGWG V2 VOC emissions by WRAP region State.

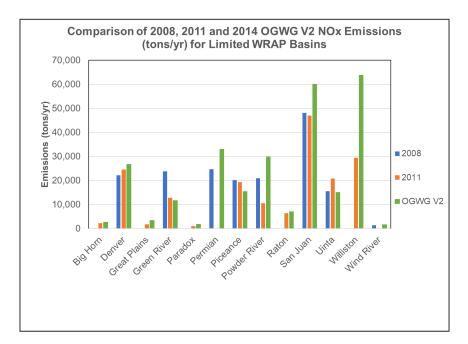

#### 3.1.2 2008, 2011, 2014-2016 baseline summaries

Figure 3-5 and Figure 3-6 show emission trends for WESTAR-WRAP basins which were included in the WestJUMP AQMS <sup>15</sup> and/or WAQS <sup>16</sup>. The geographical extent of each basin is not always the same across these inventories, however, core O&G activity counties in each basin generally did not change across inventories.

Substantial NOx emission increases from the 2008 to 2014-2016 inventory are noted for several basins, although emission increases appear to be moderated for several basins by lower emissions per unit of production based on regulatory controls and/or infrastructure configurations. Denver Basin NOx emission increases of 20% and VOC increases of 66% from 2008 to 2014-2016 are substantially less than the Colorado-wide 287% oil production increase from 2008 to 2014-2016 are substantially less than the Colorado-wide 287% oil production increase from 2008 to 2014-2016 are substantially less than the New Mexico-wide 143% oil production increase from 2008 to 2014-2016 are substantially less than the New Mexico-wide 143% oil production increase from 2008 to 2016. Williston Basin NOx emission increases of 117% and VOC decreases of 23% from 2011 to 2014-2016 are less than the North Dakota-wide oil production increases of 148% from 2011 to 2016. Increases in San Juan Basin NOx (25%) and VOC (60%) emissions from 2011 to 2014-2016 are due primarily to updated emission inventory inputs and methodology in the 2014 Greater San Juan Basin emission inventory study (Grant et al. [2018a]). Changes in Uinta Basin emissions are expected to result from both oil and gas production changes and changes to emission inventory compilation methodology in the most recent Utah Agencies Uinta Basin emission inventory.

<sup>15</sup> <u>https://www.wrapair2.org/westjumpaqms.aspx</u>

<sup>16</sup> http://views.cira.colostate.edu/wiki/#WAQS



## Figure 3-5. Comparison of 2008, 2011 and 2014 OGWG V2 NOx emissions (tons/yr) for limited WRAP Basins<sup>17,18,19</sup>.

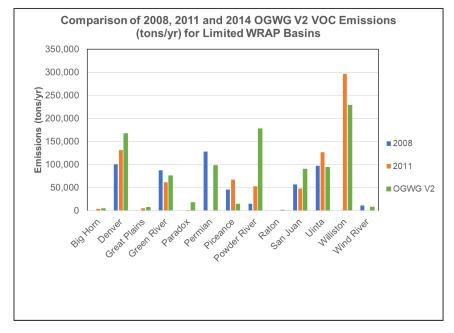



Figure 3-6. Comparison of 2008, 2011 and 2014 OGWG V2 VOC emissions (tons/yr) for limited WRAP Basins<sup>17,18,19</sup>.

<sup>&</sup>lt;sup>17</sup> Emissions for some basins are not available for 2008 or 2011.

 $<sup>^{\</sup>mbox{\tiny 18}}$  Paradox and Raton 2011 emissions are limited to permitted sources.

<sup>&</sup>lt;sup>19</sup> Great Plains includes emissions for Sweetgrass arch and Central Montana Uplift basins.

## **4.0 REFERENCES**

- EPA. 2018. 2014 National Emissions Inventory, version 2. March 2018. US Environmental Protection Agency. February, 2018. <u>https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data</u>
- CDPHE. 2018. Denver Basin, 9- County Non-Attainment Area Condensate Tank Emission Inventory. Personal Communication for Dale Wells (July 11, 2018). Colorado Department of Public Health
- Grant, J., R. Parikh, A. Bar-Ilan. 2018a. "San Juan and Permian Basin 2014 Oil and Gas Emission Inventory," Ramboll. Prepared for Western Regional Air Partnership and Western States Air Resources Council. January 2018. <u>https://www.wrapair2.org/pdf/2014 SanJuan Permian Baseyear EI Final Report 10Nov20</u> <u>17.pdf</u>
- Grant, J., R. Parikh, A. Bar-Ilan, 2018b. OGWG Road Map: Phase I Report Base and Future Year Emission Inventory Review and Work Plan Development, available at <u>https://www.wrapair2.org/pdf/OGWG Roadmap FinalPhase1Report Workplan 13Apr2018.p</u> <u>df</u>
- Parikh, R., J. Grant, A. Bar-Ilan. 2017. "Memorandum: 2014 Oil and Gas Intermountain West Criteria Pollutant Emission Inventories for Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming," Ramboll Environ. Prepared for Tom Moore, WESTAR-WRAP. June 2017. <u>http://vibe.cira.colostate.edu/wiki/Attachments/2014\_OG/WESTAR\_2014\_OandG%20EI\_Me</u> <u>mo\_08Jun2017.pdf</u>
- UDAQ. 2017. Uinta Basin: 2014 Air Agencies Oil and Gas Emissions Inventory. Utah Division of Environmental Quality. <u>https://deq.utah.gov/locations/U/uintahbasin/air-agencies-</u> <u>emissions-inventory/index.htm</u>

## Appendix A

Survey-based Input Factors Updates for the Baseline Emission Inventory

| Basin / Parameter                         | Survey - Based<br>Factors | WRAP OGWG 2014<br>V2 Emission<br>Inventory Input<br>Factors |
|-------------------------------------------|---------------------------|-------------------------------------------------------------|
| Permian Basin (NM)                        |                           |                                                             |
| Fraction of Spuds Represented             | 21%                       | not applicable                                              |
| Spud Type                                 | Horizontal                | Horizontal                                                  |
| Well Type                                 | Oil                       | Oil                                                         |
| Fuel Type                                 | Diesel                    | Diesel                                                      |
| Number of Engine Per Rig (number/rig)     | 5                         | 8                                                           |
| Rated Horsepower (hp/engine)              | 1477                      | 825                                                         |
| Hours of Operation (hours/spud)           | 546                       | 768                                                         |
| Percent of Engines Electrified (%)        | 0%                        | 25%                                                         |
| Percent of Engines - Uncontrolled         | 0%                        |                                                             |
| Percent of Engines - Tier 1               | 0%                        |                                                             |
| Percent of Engines - Tier 2               | 21%                       | EPA 2014a MOVES                                             |
| Percent of Engines - Tier 3               | 0%                        | Defaults                                                    |
| Percent of Engines - Tier 4               | 79%                       |                                                             |
| Average Engine Turnover Frequency (years) | а                         |                                                             |
| Williston Basin (MT)                      |                           |                                                             |
| Fraction of Spuds Represented             | 43%                       | not applicable                                              |
| Spud Type                                 | Horizontal                | Horizontal                                                  |
| Well Type                                 | Oil                       | Oil                                                         |
| Fuel Type                                 | Diesel                    | Diesel                                                      |
| Number of Engine Per Rig (number/rig)     | 2                         | 2                                                           |
| Rated Horsepower (hp/engine)              | 2193                      | 2293                                                        |
| Hours of Operation (hours/spud)           | 236                       | 481                                                         |
| Percent of Engines Electrified (%)        | 0%                        | 0%                                                          |
| Percent of Engines - Uncontrolled         | 0%                        |                                                             |
| Percent of Engines - Tier 1               | 0%                        | Emission factors                                            |
| Percent of Engines - Tier 2               | 100%                      | indicated a mix of                                          |
| Percent of Engines - Tier 3               | 0%                        | engines up to Tier 4                                        |
| Percent of Engines - Tier 4               | 0%                        | certification                                               |
| Average Engine Turnover Frequency (years) | а                         |                                                             |
| Williston Basin (ND)                      |                           |                                                             |
| Fraction of Spuds Represented             | 47%                       | not applicable                                              |
| Spud Type                                 | Horizontal                | Horizontal                                                  |
| Well Type                                 | Oil                       | Oil                                                         |
| Fuel Type                                 | Diesel                    | Diesel                                                      |
|                                           |                           |                                                             |

## Table A1. Baseline Emission Inventory Inputs: Drill Rigs.

| Basin / Parameter                         | Survey - Based<br>Factors | WRAP OGWG 2014<br>V2 Emission<br>Inventory Input<br>Factors |
|-------------------------------------------|---------------------------|-------------------------------------------------------------|
| Number of Engine Per Rig (number/rig)     | 4                         | 2                                                           |
| Rated Horsepower (hp/engine)              | 1445                      | 2206                                                        |
| Hours of Operation (hours/spud)           | 259                       | 507                                                         |
| Percent of Engines Electrified (%)        | 23%                       | 0%                                                          |
| Percent of Engines - Uncontrolled         | 0%                        |                                                             |
| Percent of Engines - Tier 1               | 0%                        | Emission factors                                            |
| Percent of Engines - Tier 2               | 99%                       | indicated a mix of                                          |
| Percent of Engines - Tier 3               | 1%                        | engines up to Tier 4                                        |
| Percent of Engines - Tier 4               | 0%                        | certification                                               |
| Average Engine Turnover Frequency (years) | 5                         |                                                             |

<sup>a</sup> Not enough information is available to populate this field

# Table A2. Baseline Emission Inventory Inputs: Hydraulic FracturingEngines.

| Basin / Parameter                            | Survey - Based<br>Factors | WRAP OGWG 2014<br>V2 Emission<br>Inventory Input<br>Factors |
|----------------------------------------------|---------------------------|-------------------------------------------------------------|
| Permian Basin (NM)                           |                           |                                                             |
| Fraction of Spuds Represented                | 19%                       | not applicable                                              |
| Spud Type                                    | Horizontal                | All                                                         |
| Well Type                                    | Oil                       | All                                                         |
| Configuration Type                           | Diesel Engine             | Diesel Engine                                               |
| Fraction of ICE Engine Configurations        | 95%                       | 100%                                                        |
| Number of Engines Per Frac Job (number/frac) | 22                        | 10                                                          |
| Rated Horsepower (hp/engine)                 | 1697                      | 2313                                                        |
| Hours of Operation (hours/frac job)          | 109                       | 23                                                          |
| Percent of Engines Electrified (%)           | 5%                        | 0%                                                          |
| Percent of Engines - Uncontrolled            | 0%                        |                                                             |
| Percent of Engines - Tier 1                  | 0%                        |                                                             |
| Percent of Engines - Tier 2                  | 11%                       | EPA 2014a MOVES                                             |
| Percent of Engines - Tier 3                  | 0%                        | Defaults                                                    |
| Percent of Engines - Tier 4                  | 84%                       |                                                             |
| Average Engine Turnover Frequency (years)    | 4                         |                                                             |
| Configuration Type                           | Turbine                   | Turbine                                                     |

| Basin / Parameter                                                                               | Survey - Based<br>Factors   | WRAP OGWG 2014<br>V2 Emission<br>Inventory Input<br>Factors |
|-------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------|
| Fraction of Natural Gas Engine Configurations                                                   | 5%                          | 0%                                                          |
| Rated Horsepower (hp/turbine)                                                                   | 49,000                      | -                                                           |
| Hours of Operation (hours/frac job)                                                             | 70                          | -                                                           |
| Percent of Turbines - Uncontrolled                                                              | 100%                        | -                                                           |
| Average Engine Turnover Frequency (years)                                                       | 10                          | -                                                           |
| Williston Basin (ND)                                                                            |                             |                                                             |
| Fraction of Spuds Represented                                                                   | 39%                         | not applicable                                              |
| Spud Type                                                                                       | Horizontal                  | All                                                         |
| Well Type                                                                                       | Oil                         | All                                                         |
| Fuel Type                                                                                       | Diesel                      | Diesel                                                      |
| Number of Engines Per Frac Job (number/frac)                                                    | 29                          | 5                                                           |
| Rated Horsepower (hp/engine)                                                                    | 1356                        | 1823                                                        |
| Hours of Operation (hours/frac job)                                                             | 156                         | 26                                                          |
| Percent of Engines Electrified (%)                                                              | 0%                          | 0%                                                          |
| Percent of Engines - Uncontrolled                                                               | 0%                          |                                                             |
| Percent of Engines - Tier 1                                                                     | 5%                          | Emission factors                                            |
| Percent of Engines - Tier 2                                                                     | 35%                         | indicated a mix of                                          |
| Percent of Engines - Tier 3                                                                     | 3%                          | engines up to Tier 4                                        |
| Percent of Engines - Tier 4                                                                     | 56%                         | certification                                               |
| Average Engine Turnover Frequency (years)                                                       | 3                           |                                                             |
| Powder River Basin (MT)                                                                         |                             |                                                             |
| Survey response was limited to one operator, com<br>therefore, no input factors were developed. | prising a very small fract. | ion of activity,                                            |
| Williston Basin (MT)                                                                            |                             |                                                             |

Survey response was limited to two operators comprising 2% of exploration activity. Recommend assuming that Willison Basin, Montana hydraulic fracturing inputs are equivalent to Williston Basin, North Dakota.

<sup>a</sup> Not enough information is available to populate this field

### **Table A3. Baseline Emission Inventory Inputs: Oil Tanks.**

| Basin / Parameter                      | Survey - Based<br>Factors | WRAP OGWG 2014<br>V2 Emission<br>Inventory Input<br>Factors |
|----------------------------------------|---------------------------|-------------------------------------------------------------|
| Central Montana Uplift (MT)            |                           |                                                             |
| Fraction of Oil Production Represented | 8%                        | not applicable                                              |
| Spud Type                              | Vertical                  | All                                                         |

| Basin / Parameter                                          | Survey - Based<br>Factors | WRAP OGWG 2014<br>V2 Emission<br>Inventory Input<br>Factors |
|------------------------------------------------------------|---------------------------|-------------------------------------------------------------|
| Tank Type                                                  | Oil Tank                  | Oil Tank                                                    |
| Gas Venting Rate (MCF/bbl)                                 | 0.01                      | 0.01                                                        |
| Uncontrolled Flash VOC EF (lb VOC/bbl)                     | 1.40                      | 1.75                                                        |
| Percent of Tanks - Uncontrolled                            | 100%                      | 47%                                                         |
| Percent of Tanks - Flares                                  | 0%                        | 53%                                                         |
| Percent of Tanks - Vapor Recovery Unit (VRU)               | 0%                        | 0%                                                          |
| Percent of Tanks - Other Device                            | 0%                        | 0%                                                          |
| Other Device Control Type Description                      | -                         | -                                                           |
| Inspection Type                                            | Visual                    |                                                             |
| Frequency of Inspection (number/tank/year)                 | 189                       |                                                             |
| Percent of Tanks - Open Thief Hatch                        | 3%                        |                                                             |
| Percent of Tanks - Open Dump Valves                        | 0%                        |                                                             |
| Annual Average Hours Controls are Offline -<br>Maintenance |                           | а                                                           |
| Annual Average Hours Controls are Offline -                | а                         |                                                             |
| Other                                                      |                           |                                                             |
| Other - Description                                        |                           |                                                             |
| Permian (NM)                                               |                           |                                                             |
| Fraction of Oil Production Represented                     | 3%                        | not applicable                                              |
| Spud Type                                                  | Horizontal                | All                                                         |
| Tank Type                                                  | Oil Tank                  | Oil Tank                                                    |
| Gas Venting Rate (MCF/bbl)                                 | 0.03                      | 0.01                                                        |
| Uncontrolled Flash VOC EF (lb VOC/bbl)                     | 1.93                      | 1.60                                                        |
| Percent of Tanks - Uncontrolled                            | 19%                       | 73%                                                         |
| Percent of Tanks - Flares                                  | 47%                       | 27%                                                         |
| Percent of Tanks - Vapor Recovery Unit (VRU)               | 1%                        | 0%                                                          |
| Percent of Tanks - Other Device                            | 33%                       | 0%                                                          |
| Other Device Control Type Description                      | Combustor                 | -                                                           |
|                                                            | LDAR/OGI/IR               |                                                             |
| Inspection Type                                            | Camera                    |                                                             |
| Frequency of Inspection (number/tank/year)                 | 32                        |                                                             |
| Percent of Tanks - Open Thief Hatch                        | 0%                        |                                                             |
| Percent of Tanks - Open Dump Valves                        | 0%                        | а                                                           |
| Annual Average Hours Controls are Offline -<br>Maintenance | 36                        |                                                             |
| Annual Average Hours Controls are Offline -<br>Other       | 0                         |                                                             |

| Basin / Parameter                            | Survey - Based<br>Factors            | WRAP OGWG 2014<br>V2 Emission<br>Inventory Input<br>Factors |
|----------------------------------------------|--------------------------------------|-------------------------------------------------------------|
| Other - Description                          | -                                    |                                                             |
| Powder River Basin (MT)                      |                                      |                                                             |
| Fraction of Oil Production Represented       | 93%                                  | not applicable                                              |
| Spud Type                                    | vertical                             | All                                                         |
| Tank Type                                    | Oil Tank                             | Oil Tank                                                    |
| Gas Venting Rate (MCF/bbl)                   | 0.02                                 | 0.04                                                        |
| Uncontrolled Flash VOC EF (lb VOC/bbl)       | 1.88                                 | 2.84                                                        |
| Percent of Tanks - Uncontrolled              | 1%                                   | 14%                                                         |
| Percent of Tanks - Flares                    | 6%                                   | 86%                                                         |
| Percent of Tanks - Vapor Recovery Unit (VRU) | 93%                                  | 0%                                                          |
| Percent of Tanks - Other Device              | 0%                                   | 0%                                                          |
| Other Device Control Type Description        | -                                    | -                                                           |
| Inspection Type                              | Routine                              |                                                             |
| Frequency of Inspection (number/tank/year)   | 12                                   |                                                             |
| Percent of Tanks - Open Thief Hatch          | 0%                                   |                                                             |
| Percent of Tanks - Open Dump Valves          | 0%                                   |                                                             |
| Annual Average Hours Controls are Offline -  |                                      |                                                             |
| Maintenance                                  | 24                                   | а                                                           |
| Annual Average Hours Controls are Offline -  |                                      |                                                             |
| Other                                        | 8                                    |                                                             |
|                                              | Flare failures, site                 |                                                             |
|                                              | upsets, equipment<br>failures, power |                                                             |
| Other - Description                          | losses                               |                                                             |
| Sweetgrass Arch (MT)                         | 105505                               |                                                             |
| Fraction of Oil Production Represented       | 20%                                  | not applicable                                              |
| Spud Type                                    | vertical                             | All                                                         |
| Tank Type                                    | Oil Tank                             | Oil Tank                                                    |
| Gas Venting Rate (MCF/bbl)                   | 0.01                                 | 0.01                                                        |
| Uncontrolled Flash VOC EF (Ib VOC/bbl)       | 2.07                                 | 1.94                                                        |
| Percent of Tanks - Uncontrolled              | 100%                                 | 47%                                                         |
| Percent of Tanks - Flares                    | 0%                                   | 53%                                                         |
| Percent of Tanks - Vapor Recovery Unit (VRU) | 0%                                   | 0%                                                          |
| Percent of Tanks - Other Device              | 0%                                   | 0%                                                          |
| Other Device Control Type Description        | -                                    | -                                                           |
| Inspection Type                              | visual                               |                                                             |
| Frequency of Inspection (number/tank/year)   | 0                                    | а                                                           |

|                                              |                           | WRAP OGWG 2014<br>V2 Emission |
|----------------------------------------------|---------------------------|-------------------------------|
| Basin / Parameter                            | Survey - Based<br>Factors | Inventory Input<br>Factors    |
| Percent of Tanks - Open Thief Hatch          | 0%                        |                               |
| Percent of Tanks - Open Dump Valves          | 0%                        |                               |
| Annual Average Hours Controls are Offline -  |                           |                               |
| Maintenance                                  |                           |                               |
| Annual Average Hours Controls are Offline -  | A                         |                               |
| Other                                        |                           |                               |
| Other – Description                          |                           |                               |
| Williston Basin (MT)                         |                           |                               |
| Fraction of Oil Production Represented       | 44%                       | not applicable                |
| Spud Type                                    | Horizontal                | All                           |
| Tank Type                                    | Oil Tank                  | Oil Tank                      |
| Gas Venting Rate (MCF/bbl)                   | 0.04                      | 0.06                          |
| Uncontrolled Flash VOC EF (lb VOC/bbl)       | 3.75                      | 5.33                          |
| Percent of Tanks - Uncontrolled              | 1%                        | 17%                           |
| Percent of Tanks - Flares                    | 99%                       | 83%                           |
| Percent of Tanks - Vapor Recovery Unit (VRU) | 0%                        | 0%                            |
| Percent of Tanks - Other Device              | 0%                        | 0%                            |
| Other Device Control Type Description        | Combustor                 | -                             |
|                                              | LDAR/OGI/Visual/FLI       |                               |
|                                              | RR/AVO/site sound         |                               |
| Inspection Type                              | smell                     |                               |
| Frequency of Inspection (number/tank/year)   | 11                        |                               |
| Percent of Tanks - Open Thief Hatch          | 4%                        |                               |
| Percent of Tanks - Open Dump Valves          | 0%                        | а                             |
| Annual Average Hours Controls are Offline -  |                           | ŭ                             |
| Maintenance                                  | 13                        |                               |
| Annual Average Hours Controls are Offline -  | 100                       |                               |
| Other                                        | 132                       |                               |
| Other - Description                          | Equipment failure or      |                               |
| · ·                                          | repair needed             |                               |
| Williston Basin (MT)                         |                           |                               |
| Fraction of Oil Production Represented       | 41%                       | not applicable                |
| Spud Type                                    | Vertical                  | All                           |
| Tank Type                                    | Oil Tank                  | Oil Tank                      |
| Gas Venting Rate (MCF/bbl)                   | 0.05                      | 0.06                          |
| Uncontrolled Flash VOC EF (lb VOC/bbl)       | 4.50                      | 5.33                          |
| Percent of Tanks - Uncontrolled              | 26%                       | 17%                           |
| Percent of Tanks - Flares                    | 74%                       | 83%                           |

| Basin / Parameter                                    | Survey - Based<br>Factors          | WRAP OGWG 2014<br>V2 Emission<br>Inventory Input<br>Factors |
|------------------------------------------------------|------------------------------------|-------------------------------------------------------------|
| Percent of Tanks - Vapor Recovery Unit (VRU)         | 0%                                 | 0%                                                          |
| Percent of Tanks - Other Device                      | 0%                                 | 0%                                                          |
| Other Device Control Type Description                | -                                  | -                                                           |
| Inspection Type                                      | Routine                            |                                                             |
| Frequency of Inspection (number/tank/year)           | 12                                 |                                                             |
| Percent of Tanks - Open Thief Hatch                  | 0%                                 |                                                             |
| Percent of Tanks - Open Dump Valves                  | 0%                                 |                                                             |
| Annual Average Hours Controls are Offline -          |                                    | а                                                           |
| Maintenance                                          | 24                                 | ŭ                                                           |
| Annual Average Hours Controls are Offline -<br>Other | 8                                  |                                                             |
| Other - Description                                  | Equipment failure or repair needed |                                                             |
| Williston Basin (ND)                                 |                                    |                                                             |
| Fraction of Oil Production Represented               | 51%                                | not applicable                                              |
| Spud Type                                            | Horizontal                         | All                                                         |
| Tank Type                                            | Oil Tank                           | Oil Tank                                                    |
| Gas Venting Rate (MCF/bbl)                           | 0.08                               | 0.07                                                        |
| Uncontrolled Flash VOC EF (lb VOC/bbl)               | 2.18                               | 5.64                                                        |
| Percent of Tanks - Uncontrolled                      | 0%                                 | 17%                                                         |
| Percent of Tanks - Flares                            | 98%                                | 83%                                                         |
| Percent of Tanks - Vapor Recovery Unit (VRU)         | 1%                                 | 0%                                                          |
| Percent of Tanks - Other Device                      | 1%                                 | 0%                                                          |
| Other Device Control Type Description                | Combustor                          | -                                                           |
| Inspection Type                                      | LDAR/OGI/Visual/FLI<br>RR/AVO      |                                                             |
| Frequency of Inspection (number/tank/year)           | 7                                  |                                                             |
| Percent of Tanks - Open Thief Hatch                  | 9%                                 |                                                             |
| Percent of Tanks - Open Dump Valves                  | 5%                                 |                                                             |
| Annual Average Hours Controls are Offline -          |                                    | а                                                           |
| Maintenance                                          | 23                                 |                                                             |
| Annual Average Hours Controls are Offline -<br>Other | 492                                |                                                             |
| Other - Description                                  | Equipment failure or repair need   |                                                             |
| Williston Basin (ND)                                 |                                    |                                                             |
| Fraction of Oil Production Represented               | 24%                                | not applicable                                              |

| Basin / Parameter                            | Survey - Based<br>Factors | WRAP OGWG 2014<br>V2 Emission<br>Inventory Input<br>Factors |
|----------------------------------------------|---------------------------|-------------------------------------------------------------|
| Spud Type                                    | Vertical                  | All                                                         |
| Tank Type                                    | Oil Tank                  | Oil Tank                                                    |
| Gas Venting Rate (MCF/bbl)                   | 0.02                      | 0.07                                                        |
| Uncontrolled Flash VOC EF (lb VOC/bbl)       | 1.33                      | 5.64                                                        |
| Percent of Tanks - Uncontrolled              | 1%                        | 17%                                                         |
| Percent of Tanks - Flares                    | 99%                       | 83%                                                         |
| Percent of Tanks - Vapor Recovery Unit (VRU) | 0%                        | 0%                                                          |
| Percent of Tanks - Other Device              | 0%                        | 0%                                                          |
| Other Device Control Type Description        | Combustor                 | -                                                           |
| Inspection Type                              | LDAR/OGI/Visual/<br>AVO   |                                                             |
| Frequency of Inspection (number/tank/year)   | 4                         |                                                             |
| Percent of Tanks - Open Thief Hatch          | 0%                        |                                                             |
| Percent of Tanks - Open Dump Valves          | 1%                        | а                                                           |
| Annual Average Hours Controls are Offline -  |                           | a                                                           |
| Maintenance                                  |                           |                                                             |
| Annual Average Hours Controls are Offline -  | A                         |                                                             |
| Other                                        | 4                         |                                                             |
| Other – Description                          |                           |                                                             |

<sup>a</sup>Not enough information is available to populate this field

## **Table A4. Baseline Emission Inventory Inputs: Condensate Tanks.**

|                                               |                 | WRAP OGWG 2014        |
|-----------------------------------------------|-----------------|-----------------------|
|                                               | Survey - Based  | V2 Emission Inventory |
| Basin / Parameter                             | Factors         | Input Factors         |
| Sweetgrass Arch (MT)                          |                 |                       |
| Fraction of Condensate Production Represented | 14%             | not applicable        |
| Spud Type                                     | Vertical        | All                   |
| Tank Type                                     | Condensate Tank | Condensate Tank       |
| Gas Venting Rate (MCF/bbl)                    | 0.13            | 0.15                  |
| Uncontrolled Flash VOC EF (lb VOC/bbl)        | 6.40            | 7.00                  |
| Percent of Tanks - Uncontrolled               | 100%            | 31%                   |
| Percent of Tanks - Flares                     | 0%              | 69%                   |
| Percent of Tanks - Vapor Recovery Unit (VRU)  | 0%              | 0%                    |
| Percent of Tanks - Other Device               | 0%              | 0%                    |
| Other Device Control Type Description         | -               | -                     |
| Inspection Type                               | visual          | а                     |

|                                                         |                      | WRAP OGWG 2014        |
|---------------------------------------------------------|----------------------|-----------------------|
|                                                         | Survey - Based       | V2 Emission Inventory |
| Basin / Parameter                                       | Factors              | Input Factors         |
| Frequency of Inspection (number/tank/year)              | 12                   |                       |
| Percent of Tanks - Open Thief Hatch                     | 0%                   |                       |
| Percent of Tanks - Open Dump Valves                     | 0%                   |                       |
| Annual Average Hours Controls are Offline - Maintenance |                      |                       |
| Annual Average Hours Controls are Offline – Other       | А                    |                       |
| Other – Description                                     |                      |                       |
| Williston Basin (MT)                                    |                      |                       |
| Fraction of Condensate Production Represented           | 65%                  | not applicable        |
| Spud Type                                               | Horizontal           | All                   |
| Tank Type                                               | Condensate Tank      | Condensate Tank       |
| Gas Venting Rate (MCF/bbl)                              | 0.17                 | 0.30                  |
| Uncontrolled Flash VOC EF (lb VOC/bbl)                  | 11.36                | 14.08                 |
| Percent of Tanks - Uncontrolled                         | 4%                   | 8%                    |
| Percent of Tanks - Flares                               | 95%                  | 91%                   |
| Percent of Tanks - Vapor Recovery Unit (VRU)            | 0%                   | 0%                    |
| Percent of Tanks - Other Device                         | 1%                   | 0%                    |
| Other Device Control Type Description                   | Combustor            | -                     |
| Inspection Type                                         | LDAR                 |                       |
| Frequency of Inspection (number/tank/year)              | 2                    | - a                   |
| Percent of Tanks - Open Thief Hatch                     | 14%                  |                       |
| Percent of Tanks - Open Dump Valves                     | 0%                   |                       |
| Annual Average Hours Controls are Offline - Maintenance | 48                   |                       |
| Annual Average Hours Controls are Offline - Other       | 480                  |                       |
| Other - Description                                     | Equipment failure or |                       |
|                                                         | repair needed        |                       |
| Williston Basin (ND)                                    |                      | 1                     |
| Fraction of Condensate Production Represented           | <1%                  | not applicable        |
| Spud Type                                               | Horizontal           | All                   |
| Tank Type                                               | Condensate Tank      | Condensate Tank       |
| Gas Venting Rate (MCF/bbl)                              | 0.09                 | 0.31                  |
| Uncontrolled Flash VOC EF (lb VOC/bbl)                  | 10.53                | 14.72                 |
| Percent of Tanks - Uncontrolled                         | 1%                   | 8%                    |
| Percent of Tanks - Flares                               | 99%                  | 92%                   |
| Percent of Tanks - Vapor Recovery Unit (VRU)            | 0%                   | 0%                    |
| Percent of Tanks - Other Device                         | 1%                   | 0%                    |
| Other Device Control Type Description                   | Combustor            | -                     |
| Inspection Type                                         | A                    | а                     |
| Frequency of Inspection (number/tank/year)              |                      | a                     |

| Basin / Parameter                                                                                                                      | Survey - Based<br>Factors  | WRAP OGWG 2014<br>V2 Emission Inventory<br>Input Factors |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------|
| Percent of Tanks - Open Thief Hatch                                                                                                    |                            |                                                          |
| Percent of Tanks - Open Dump Valves                                                                                                    |                            |                                                          |
| Annual Average Hours Controls are Offline – Maintenance                                                                                |                            |                                                          |
| Annual Average Hours Controls are Offline – Other                                                                                      |                            |                                                          |
| Other – Description                                                                                                                    |                            |                                                          |
| Big Horn Basin (MT)                                                                                                                    |                            |                                                          |
| Survey response was limited to one operator, comprising a very small fraction of activity, therefore, no input factors were developed. |                            |                                                          |
| Central Montana Uplift (MT)                                                                                                            |                            |                                                          |
| Survey response was limited to one operator, comprising a v<br>factors were developed.                                                 | ery small fraction of acti | vity, therefore, no input                                |

<sup>a</sup> Not enough information is available to populate this field

## **Table A5. Baseline Emission Inventory Inputs: Wellsite Engines.**

| Basin / Parameter                                      | Survey - Based<br>Factors | WRAP OGWG 2014<br>V2 Emission Inventory<br>Input Factors |
|--------------------------------------------------------|---------------------------|----------------------------------------------------------|
| Sweetgrass Arch (MT) - Wellhead Compressor Engines     |                           |                                                          |
| Fraction of Well Count Represented                     | 30%                       | not applicable                                           |
| Spud Type                                              | Vertical                  | All                                                      |
| Well Type                                              | Gas                       | Gas                                                      |
| Fuel Type                                              | Natural Gas               | Natural Gas                                              |
| Number of engines per well                             | 1.0                       | 0                                                        |
| Rated Horsepower (hp/engine)                           | 121                       | 135                                                      |
| Hours of Operation (hours/engine)                      | 740                       | 0                                                        |
| Percent of Engines Electrified (%)                     | 0%                        | 0%                                                       |
| Average Engine Turnover Frequency (years)              | а                         | а                                                        |
| If Other - Fuel Type                                   | -                         | -                                                        |
| If NG - Percent of Engines - Lean Burn                 | 21%                       | 30%                                                      |
| If NG - Percent of Engines - Rich Burn                 | 79%                       | 70%                                                      |
| Percent of Engines Meeting NSPS subpart JJJJ Standards | а                         | а                                                        |
| Big Horn Basin (MT) - Lateral Compressor Engines       |                           |                                                          |
| Fraction of Well Count Represented                     | 14%                       | not applicable                                           |
| Spud Type                                              | Vertical                  | All                                                      |
| Well Type                                              | Gas                       | Gas                                                      |
| Fuel Type                                              | Natural Gas               | Natural Gas                                              |
| Number of Wells per Engine                             | 31                        | 35                                                       |

| Basin / Parameter                                           | Survey - Based<br>Factors  | WRAP OGWG 2014<br>V2 Emission Inventory<br>Input Factors |
|-------------------------------------------------------------|----------------------------|----------------------------------------------------------|
| Rated Horsepower (hp/engine)                                | 237                        | 271                                                      |
| Hours of Operation (hours/engine)                           | 8760                       | 8760                                                     |
| Percent of Engines Electrified (%)                          | 0%                         | 0%                                                       |
| Average Engine Turnover Frequency (years)                   | 40                         | а                                                        |
| If Other - Fuel Type                                        | -                          | -                                                        |
| If NG - Percent of Engines - Lean Burn                      | 20%                        | 20%                                                      |
| If NG - Percent of Engines - Rich Burn                      | 80%                        | 80%                                                      |
| Percent of Engines Meeting NSPS subpart JJJJ Standards      | а                          | а                                                        |
| Central Montana Uplift (MT) - Lateral Compressor Engines    |                            |                                                          |
| Fraction of Well Count Represented                          | 82%                        | not applicable                                           |
| Spud Type                                                   | Vertical                   | All                                                      |
| Well Type                                                   | Gas                        | Gas                                                      |
| Fuel Type                                                   | Natural Gas                | Natural Gas                                              |
| Number of Wells per Engine                                  | 28                         | 129                                                      |
| Rated Horsepower (hp/engine)                                | 277                        | 443                                                      |
| Hours of Operation (hours/engine)                           | 4576                       | 8559                                                     |
| Percent of Engines Electrified (%)                          | 0%                         | 0%                                                       |
| Average Engine Turnover Frequency (years)                   | а                          | а                                                        |
| If Other - Fuel Type                                        | -                          | -                                                        |
| If NG - Percent of Engines - Lean Burn                      | 11%                        | 61%                                                      |
| If NG - Percent of Engines - Rich Burn                      | 89%                        | 39%                                                      |
| Percent of Engines Meeting NSPS subpart JJJJ Standards      | а                          | а                                                        |
| Sweetgrass Arch (MT) - Artificial Lift Engines              |                            |                                                          |
| Survey response was limited to one operator, comprising a v | ery small fraction of acti | vity, therefore, no input                                |
| factors were developed.                                     |                            |                                                          |
| Williston Basin (MT) - Artificial Lift Engines              | 1                          | I                                                        |
| Fraction of Well Count Represented                          | 48%                        | not applicable                                           |
| Spud Type                                                   | Vertical                   | All                                                      |
| Well Type                                                   | Oil                        | Oil                                                      |
| Fuel Type                                                   | Natural Gas                | Natural Gas                                              |
| Number of engines per well                                  | 0.78                       | 0.23                                                     |
| Rated Horsepower (hp/engine)                                | 96                         | 65                                                       |
| Hours of Operation (hours/engine)                           | 6841                       | 7930                                                     |
| Percent of Engines Electrified (%)                          | 95%                        | 21%                                                      |
| Average Engine Turnover Frequency (years)                   | а                          | а                                                        |
| lf Other - Fuel Type                                        | -                          | -                                                        |
| If NG - Percent of Engines - Lean Burn                      | 0%                         | 0%                                                       |
| If NG - Percent of Engines - Rich Burn                      | 100%                       | 100%                                                     |

| Basin / Parameter                                      | Survey - Based<br>Factors | WRAP OGWG 2014<br>V2 Emission Inventory<br>Input Factors |
|--------------------------------------------------------|---------------------------|----------------------------------------------------------|
| Percent of Engines Meeting NSPS subpart JJJJ Standards | 0%                        | а                                                        |
| Williston Basin (ND and MT) - Artificial Lift Engines  |                           |                                                          |
| Fraction of Well Count Represented                     | 49%                       | not applicable                                           |
| Spud Type                                              | Horizontal                | All                                                      |
| Well Type                                              | Oil                       | Oil                                                      |
| Fuel Type                                              | Natural Gas               | Natural Gas                                              |
| Number of engines per well                             | 0.51                      | 0.22                                                     |
| Rated Horsepower (hp/engine)                           | 242                       | 70                                                       |
| Hours of Operation (hours/engine)                      | 8322                      | 8538                                                     |
| Percent of Engines Electrified (%)                     | 76%                       | 17%                                                      |
| Average Engine Turnover Frequency (years)              | 6                         | а                                                        |
| If Other - Fuel Type                                   | -                         | -                                                        |
| If NG - Percent of Engines - Lean Burn                 | 76%                       | 0%                                                       |
| If NG - Percent of Engines - Rich Burn                 | 24%                       | 100%                                                     |
| Percent of Engines Meeting NSPS subpart JJJJ Standards | 42%                       | а                                                        |
| Williston Basin (ND) - Artificial Lift Engines         |                           |                                                          |
| Fraction of Well Count Represented                     | 10%                       | not applicable                                           |
| Spud Type                                              | Vertical                  | All                                                      |
| Well Type                                              | Oil                       | Oil                                                      |
| Fuel Type                                              | Natural Gas               | Natural Gas                                              |
| Number of engines per well                             | 0.33                      | 0.22                                                     |
| Rated Horsepower (hp/engine)                           | 66                        | 70                                                       |
| Hours of Operation (hours/engine)                      | 8384                      | 8538                                                     |
| Percent of Engines Electrified (%)                     | 52%                       | 17%                                                      |
| Average Engine Turnover Frequency (years)              | 18                        | а                                                        |
| If Other - Fuel Type                                   | -                         | -                                                        |
| If NG - Percent of Engines - Lean Burn                 | 48%                       | 0%                                                       |
| If NG - Percent of Engines - Rich Burn                 | 52%                       | 100%                                                     |
| Percent of Engines Meeting NSPS subpart JJJJ Standards | а                         | а                                                        |
| Permian Basin (MT) - Artificial Lift Engines           |                           |                                                          |
| Fraction of Well Count Represented                     | 19%                       | not applicable                                           |
| Spud Type                                              | Horizontal                | All                                                      |
| Well Type                                              | Oil                       | Oil                                                      |
| Fuel Type                                              | Natural Gas               | Natural Gas                                              |
| Number of engines per well                             | 0.42                      | 0.97                                                     |
| Rated Horsepower (hp/engine)                           | 373                       | 21                                                       |
| Hours of Operation (hours/engine)                      | 8760                      | 4380                                                     |
| Percent of Engines Electrified (%)                     | 14%                       | 70%                                                      |

| Basin / Parameter                                      | Survey - Based<br>Factors | WRAP OGWG 2014<br>V2 Emission Inventory<br>Input Factors |
|--------------------------------------------------------|---------------------------|----------------------------------------------------------|
| Average Engine Turnover Frequency (years)              | а                         | a                                                        |
| If Other - Fuel Type                                   | -                         | -                                                        |
| If NG - Percent of Engines - Lean Burn                 | 26%                       | 0%                                                       |
| If NG - Percent of Engines - Rich Burn                 | 74%                       | 100%                                                     |
| Percent of Engines Meeting NSPS subpart JJJJ Standards | 99%                       | ā                                                        |
| Williston Basin (MT and ND) – Generators               |                           |                                                          |
| Fraction of Well Count Represented                     | 65%                       |                                                          |
| Spud Type                                              | Horizontal                |                                                          |
| Well Type                                              | Oil                       |                                                          |
| Fuel Type                                              | Natural Gas               |                                                          |
| Number of engines per well                             | 0.03                      |                                                          |
| Rated Horsepower (hp/engine)                           | 327                       |                                                          |
| Hours of Operation (hours/engine)                      | 6094                      |                                                          |
| Percent of Engines Electrified (%)                     | 16%                       |                                                          |
| Average Engine Turnover Frequency (years)              | 5.6                       |                                                          |
| If NG - Percent of Engines - Lean Burn                 | 10%                       | А                                                        |
| If NG - Percent of Engines - Rich Burn                 | 90%                       |                                                          |
| Percent of Engines Meeting NSPS subpart JJJJ Standards | 97%                       |                                                          |
| Fuel Type                                              | Diesel                    |                                                          |
| Number of engines per well                             | 0.02                      |                                                          |
| Rated Horsepower (hp/engine)                           | 222                       |                                                          |
| Hours of Operation (hours/engine)                      | 8760                      |                                                          |
| Percent of Engines Electrified (%)                     | 0%                        |                                                          |
| Average Engine Turnover Frequency (years)              | 3                         |                                                          |
| Percent of Engines Meeting NSPS subpart JJJJ Standards | а                         |                                                          |
| Permian Basin – Generators                             |                           |                                                          |

Survey response was limited to one operator. Since this source category is not included in the WRAP OGWG v2 emission inventory, it was not possible to develop input factors due to confidentiality considerations.

Permian Basin – Vapor Recovery Unit Engines

Survey response was limited to one operator. Since this source category is not included in the WRAP OGWG v2 emission inventory, it was not possible to develop input factors due to confidentiality considerations.

<sup>a</sup> Not enough information is available to populate this field